精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-ax,g(x)=
1
2
x2-lnx-
5
2

(1)若对一切x∈(0,+∞),有不等式f(x)≥2x•g(x)-x2+5x-3恒成立,求实数a的取值范围;
(2)记G(x)=
1
2
x2-
5
2
-g(x)
,求证:G(x)>
1
ex
-
2
ex
(1)原不等式可化为:x3-ax≥2x(
1
2
x2-lnx-
5
2
)-x2+5x-3
,化简得:ax≤2xlnx+x2+3,
∵x>0,故上式可化为a≤2lnx+
3
x
+
x恒成立,则问题等价于a≤(2lnx+
3
x
+x)min

t(x)=2lnx+
3
x
+x,(x>0),t(x)=
x2+2x-3
x2

令t′(x)=0,得x=1,
∵x>0,∴在(0,1)上,t′(x)<0,在(1,+∞)上,t′(x)>0,
∴t(x)在(0,1)上单调递减,在(1,+∞)上单调递增.
故当x=1时,t(x)有最小值为4,故a≤4,
∴实数a的取值范围是a∈(-∞,4];
(2)化简得,G(x)=lnx,则原不等式可化为lnx>
1
ex
-
2
ex
,即证xlnx>
x
ex
-
2
e
成立,
记F(x)=xlnx,则F'(x)=lnx+1,
当0<x<
1
e
时,F'(x)<0,F(x)递减;当x>
1
e
时,F'(x)>0,F(x)递增,
故当x=
1
e
时,F(x)取得极小值,也为最小值,其最小值为F(
1
e
)=-
1
e

H(x)=
x
ex
-
2
e
,则H'(x)=
1-x
ex

当0<x<1时,H'(x)>0,H(x)递增;当x>1时,H'(x)<0,H(x)递减;
故当x=1时,H(x)取得极大值,也为最大值,其最大值为H(1)=-
1
e

由函数F(x)的最小值与函数H(x)的最大值不能同时取到,
故x∈(0,+∞)时,F(x)>H(x),故原不等式成立.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,且
(1)求实数c的值;
(2)解不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x2-2|x|-1(-3≤x≤3)
(1)证明f(x)是偶函数;
(2)指出函数f(x)的单调增区间;
(3)求函数的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,且当x>0时,f(x)=(
1
2
)x+1
,则f(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
px2+2
x-q
,对定义域中的所有x都满足f(x)+f(-x)=0,f(2)=5
(1)求实数p,q的值;
(2)判断函数f(x)在[1,+∞)上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若关于x的不等式x2-(a-1)x>-4对于x∈R恒成立,则a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=
1
22x+m•2x+1
的定义域为R,试求实数m的取值范围(  )
A.(-2,2)B.(-∞,-2)∪(2,+∞)C.(0,2)D.(-2,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

判断奇偶性,函数y=x-
2
3
,x∈(-∞,0)∪(0,+∞)是函数______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(x)=则f(f(1))的值等于    .

查看答案和解析>>

同步练习册答案