精英家教网 > 高中数学 > 题目详情
设f(x)是连续的偶函数,且当x>0时,f(x)是单调的函数,则满足f(x)=f(
x+3
x+4
)
的所有的x的和为______.
∵f(x)为偶函数,且当x>0时f(x)是单调函数
∴若 f(x)=f(
x+3
x+4
)
时,即 x=
x+3
x+4
-x=
x+3
x+4

得x2+3x-3=0或x2+5x+3=0,
此时x1+x2=-3或x3+x4=-5.
∴满足 f(x)=f(
x+3
x+4
)
的所有x之和为-3+(-5)=-8,
故答案为-8.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=
a2x-(t-1)
ax
(a>0且a≠1)是定义域为R的奇函数
(1)求t的值;
(2)若f(1)>0,求使不等式f(kx-x2)+f(x-1)<0对一切x∈R恒成立的实数k的取值范围;
(3)若函数f(x)的反函数过点(
3
2
,1)
,是否存在正数m,且m≠1使函数g(x)=logm[a2x+a-2x-mf(x)]在[1,log23]上的最大值为0,若存在求出m的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)的定义域为D,若存在非零实数t使得对于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),则称f(x)为M上的t高调函数.如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是 ______.如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是 ______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x2-2|x|-1(-3≤x≤3)
(1)证明f(x)是偶函数;
(2)指出函数f(x)的单调增区间;
(3)求函数的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

奇函数y=f(x)定义在[-1,1]上,且是减函数,若f(1-a)+f(1-2a)>0,则实数a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在R上定义的函数f(x)是偶函数,且f(x)=f(2-x).若f(x)在区间[1,2]上是减函数,则f(x)
(  )
A.在区间[-2,-1]上是增函数,在区间[3,4]上是增函数
B.在区间[-2,-1]上是增函数,在区间[3,4]上是减函数
C.在区间[-2,-1]上是减函数,在区间[3,4]上是增函数
D.在区间[-2,-1]上是减函数,在区间[3,4]上是减函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数f(x)为定义在R上的奇函数,当x∈(0,1)时,f(x)=
2x
2x+1

(1)求函数f(x)在(-1,1)上的解析式;
(2)判断函数f(x)在(0,1)上的单调性并证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,且当x>0时,f(x)=(
1
2
)x+1
,则f(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

判断奇偶性,函数y=x-
2
3
,x∈(-∞,0)∪(0,+∞)是函数______.

查看答案和解析>>

同步练习册答案