精英家教网 > 高中数学 > 题目详情
奇函数y=f(x)定义在[-1,1]上,且是减函数,若f(1-a)+f(1-2a)>0,则实数a的取值范围是______.
不等式f(1-a)+f(1-2a)>0即f(1-a)>-f(1-2a),
∵f(-x)=-f(x),可得-f(1-2a)=f(2a-1)
∴原不等式转化为f(1-a)>f(2a-1)
又∵f(x)是定义在[-1,1]上的减函数,
∴-1≤1-a<2a-1≤1,解之得
2
3
<m≤1
即实数a的取值范围为(
2
3
,1].
故答案为:(
2
3
,1]
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
px2+2
-3x
,且f(2)=-
5
3

(1)求函数f(x)的解析式;
(2)判断f(x)的奇偶性;
(3)判断函数f(x)在区间(0,1)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知关于x的不等式ex|x-a|≥x在x∈R上恒成立,则实数a的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

偶函数f(x)在(-∞,0)上是增函数,问它在(0,+∞)是增函数还是减函数?能否用函数单调性的定义证明你的结论?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对定义在区间D上的函数f(x),若存在闭区间[a,b]⊆D和常数C,使得对任意的x∈[a,b]都有f(x)=C,且对任意的x∉[a,b]都有f(x)>C恒成立,则称函数f(x)为区间D上的“U型”函数.
(1)求证函数f(x)=|x-1|+|x-3|是R上的“U型”函数;
(2)设函数f(x)是(1)中的“U型”函数,若不等式|t-1|+|t-2|≤f(x)对一切t∈R恒成立,求实数t的取值范围.
(3)若函数g(x)=mx+
x2+2x+n
是区间[-2,+∞)上的“U型”函数,求实数m和n的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x+
a
x

(1)证明函数f(x)是奇函数;
(2)若a=1,求证函数在区间[1,+∞)上单调递增;
(3)若函数在区间[1,+∞)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)是连续的偶函数,且当x>0时,f(x)是单调的函数,则满足f(x)=f(
x+3
x+4
)
的所有的x的和为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)是偶函数,且它在[0,+∞)上是减函数,若f(lgx)>f(1),则x的取值围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义在区间[-
2
3
π,π]上的函数y=f(x)的图象关于直线x=
π
6
对称,当x∈[-
2
3
π,
π
6
]时,函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),其图象如图所示.

(Ⅰ)求函数y=f(x)在[-
2
3
π,π]的表达式;
(Ⅱ)求方程f(x)=
2
的解;
(Ⅲ)是否存在常数m的值,使得|f(x)-m|<2在x∈[-
3
,π]上恒成立;若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案