精英家教网 > 高中数学 > 题目详情
对定义在区间D上的函数f(x),若存在闭区间[a,b]⊆D和常数C,使得对任意的x∈[a,b]都有f(x)=C,且对任意的x∉[a,b]都有f(x)>C恒成立,则称函数f(x)为区间D上的“U型”函数.
(1)求证函数f(x)=|x-1|+|x-3|是R上的“U型”函数;
(2)设函数f(x)是(1)中的“U型”函数,若不等式|t-1|+|t-2|≤f(x)对一切t∈R恒成立,求实数t的取值范围.
(3)若函数g(x)=mx+
x2+2x+n
是区间[-2,+∞)上的“U型”函数,求实数m和n的值.
(1)当x∈[1,3]时,f(x)=x-1+3-x=2,
当x∉[1,3]时,f(x)=|x-1|+|x-3|>|x-1+3-x|=2,
故存在闭区间[a,b]=[1,3]⊆R和常数C=2符合条件,
所以函数f(x)=|x-1|+|x-3|是R上的“U型”函数;
(2)因为不等式|t-1|+|t-2|≤f(x)对一切x∈R恒成立,
所以|t-1|+|t-2|≤f(x)min
由(1)可知f(x)min=(|x-1|+|x-3|)min=2,
所以|t-1|+|t-2|≤2,
解得:
1
2
≤t≤
5
2

(3)由“U型”函数定义知,存在闭区间[a,b]⊆[-2,+∞)和常数c,使得对任意的x∈[a,b],
都有g(x)=mx+
x2+2x+n
=c,即
x2+2x+n
=c-mx,
所以x2+2x+n=(c-mx)2恒成立,即x2+2x+n=m2x2-2cmx+c2对任意的x∈[a,b]成立,
所以
m2=1
-2cm=2
c2=n
,所以
m=1
c=-1
n=1
m=-1
c=1
n=1

①当
m=1
c=-1
n=1
时,g(x)=x+|x+1|.
当x∈[-2,-1]时,g(x)=-1,当x∈(-1,+∞)时,g(x)=2x+1>-1恒成立.
此时,g(x)是区间[-2,+∞)上的“U型”函数;
②当
m=-1
c=1
n=1
时,g(x)=-x+|x+1|.
当x∈[-2,-1]时,g(x)=-2x-1≥1,当x∈(-1,+∞)时,g(x)=1.
此时,g(x)不是区间[-2,+∞)上的“U型”函数.
综上分析,m=1,n=1为所求;
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(Ⅰ)已知f(x)=
2
3x-1
+k
是奇函数,求常数k的值.;
(Ⅱ)已知函数f(x)=x|x-m|(x∈R)且f(4)=0.
①求实数m的取值.
②如图,作出函数f(x)的图象并写出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
a
a2-1
(ax-a-x),(a>0且a≠1).
(1)判断函数f(x)的单调性,并证明;
(2)当函数f(x)的定义域为(-1,1)时,求使f(1-m)+f(1-m2)<0成立的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)的定义域为D,若存在非零实数t使得对于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),则称f(x)为M上的t高调函数.如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是 ______.如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是 ______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知定义在(-1,1)上的偶函数f(x)在(0,1)上单调递增,则满足f(2x-1)<f(x)的x的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x2-2|x|-1(-3≤x≤3)
(1)证明f(x)是偶函数;
(2)指出函数f(x)的单调增区间;
(3)求函数的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

奇函数y=f(x)定义在[-1,1]上,且是减函数,若f(1-a)+f(1-2a)>0,则实数a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数f(x)为定义在R上的奇函数,当x∈(0,1)时,f(x)=
2x
2x+1

(1)求函数f(x)在(-1,1)上的解析式;
(2)判断函数f(x)在(0,1)上的单调性并证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若关于x的不等式x2-(a-1)x>-4对于x∈R恒成立,则a的取值范围是______.

查看答案和解析>>

同步练习册答案