精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x+
a
x

(1)证明函数f(x)是奇函数;
(2)若a=1,求证函数在区间[1,+∞)上单调递增;
(3)若函数在区间[1,+∞)上单调递增,求a的取值范围.
(1)函数的定义域是x∈R,且x≠0,又f(-x)=(-x)+
a
-x
=-(x+
a
x
)=-f(x),所以f(x)是奇函数;
(2)当a=1时,任取x1,x2∈[1,+∞),且1≤x1<x2,则f(x2)-f(x1)=(x2+
1
x2
)-(x1+
1
x1
)=(x2-x1)+
x1-x2
x1x2
=
(x2-x1)(x1x2-1)
x1x2

∵x2-x1>0,x1x2>1,∴x1x2-1>0,∴f(x2)-f(x1)>0,即f(x2)>f(x1),
∴函数在区间[1,+∞)上是增函数;
(3)因为函数在区间[1,+∞)上是增函数,设1≤x1<x2,则x2-x1>0,x1x2>1,
所以f(x2)-f(x1)=(x2+
a
x2
)-(x1+
a
x1
)=(x2-x1)+
a(x1-x2)
x1x2
=
(x2-x1)(x1x2-a)
x1x2
>0,
∴x1x2-a>0,
∴a<x1x2,故a≤1,所以a的取值范围是:[1,+∞).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)是(-∞,+∞)上的奇函数,x∈[0,2)时,f(x)=x2,若对于任意x∈R,都有f(x+4)=f(x),则f(2)-f(3)的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

偶函数f(x)在区间[0,+∞)的图象如右,则函数f(x)的单调增区间为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知定义在(-1,1)上的偶函数f(x)在(0,1)上单调递增,则满足f(2x-1)<f(x)的x的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数y=f(x)的图象与函数y=
x-2
x+3
的图象关于y=x对称,则函数f(x)为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

奇函数y=f(x)定义在[-1,1]上,且是减函数,若f(1-a)+f(1-2a)>0,则实数a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列判断正确的是(  )
A.定义在R上的函数f(x),若f(-1)=f(1),且f(-2)=f(2),则f(x)是偶函数
B.定义在R上的函数f(x)满足f(2)>f(1),则f(x)在R上不是减函数
C.定义在R上的函数f(x)在区间(-∞,0]上是减函数,在区间(0,+∞)上也是减函数,则f(x)在R上是减函数
D.既是奇函数又是偶函数的函数有且只有一个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

f(x)定义在R上的偶函数,在区间(-∞,0]上递增,且有f(2a2+a+1)<f(3a2-2a+1),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义域为R的函数f(x)=
-2x+a
2x+1
是奇函数,
(1)求a值,并判断f(x)的单调性(不需证明);
(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案