精英家教网 > 高中数学 > 题目详情
已知函数f(x)是(-∞,+∞)上的奇函数,x∈[0,2)时,f(x)=x2,若对于任意x∈R,都有f(x+4)=f(x),则f(2)-f(3)的值为______.
∵f(x+4)=f(x),∴f(x+2)=f(x-2).
再根据函数f(x)是(-∞,+∞)上的奇函数,可得 f(x+2)=-f(2-x),
∴f(2)=-f(2),∴f(2)=0.
∴f(2)-f(3)=0-f(-1+4)=-f(-1)=f(1),
再根据x∈[0,2)时,f(x)=x2,可得得f(1)=1.
故答案为:1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=x2+bx+c(b,c∈R),若b、c满足c≥
b2
4
+1
,且f(c)-f(b)≤M(c2-b2)恒成立,则M的最小值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-2,g(x)=xlnx,,
(1)若对一切x∈(0,+∞),2g(x)≥ax-5-f(x)恒成立,求实数a的取值范围;
(2)试判断方程ln(1+x2)-
1
2
f(x)-k=0
有几个实根.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=4x-2•2x+1-6,其中x∈[0,3].
(1)求函数f(x)的最大值和最小值;
(2)若实数a满足:f(x)-a≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知关于x的不等式ex|x-a|≥x在x∈R上恒成立,则实数a的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数y=f(x)是R上的偶函数,且在[0,+∞)上是减函数,若f(log2x)>f(1)则x的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果奇函数f(x)在区间[3,7]上是增函数且最大值为5,那么f(x)在区间[-7,-3]上是(  )
A.增函数且最小值为-5B.增函数且最大值为-5
C.减函数且最大值是-5D.减函数且最小值是-5

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x+
a
x

(1)证明函数f(x)是奇函数;
(2)若a=1,求证函数在区间[1,+∞)上单调递增;
(3)若函数在区间[1,+∞)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设偶函数f (x)=loga|xb|在(-∞,0)上递增,则f (a+1)与f (b+2)的大小关系是(   )
A.f(a+1)=f (b+2)B.f (a+1)>f (b+2)
C.f(a+1)<f (b+2)D.不确定

查看答案和解析>>

同步练习册答案