精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+bx+c(b,c∈R),若b、c满足c≥
b2
4
+1
,且f(c)-f(b)≤M(c2-b2)恒成立,则M的最小值为______.
∵c≥
b2
4
+1≥2×
|b|
2
×1知,c≥|b|,
当c>|b|时,有M≥
f(c)-f(b)
c2-b2
=
c2-b2+bc-b2
c2-b2
=
c+2b
b+c

令t=
b
c
,则-1<t<1,
c+2b
b+c
=2-
1
1+t

∵函数g(t)=2-
1
1+t
(-1<t<1)为增函数,
∴该函数的值域是(-∞,
3
2
);
∴当c>|b|时,M的取值集合为[
3
2
,+∞);
当c=|b|时,由c≥
b2
4
+1知,b=±2,c=2,此时f(c)-f(b)=-8或0,
c2-b2=0,从而f(c)-f(b)≤
3
2
(c2-b2)恒成立;
综上所述,M的最小值为
3
2

故答案为:
3
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

定义在R上的奇函数f(x)为减函数,设a+b≤0,给出下列不等式:①f(a)·f(-a)≤0;②f(b)·f(-b)≥0;③f(a)+f(b)≤f(-a)+f(-b);④f(a)+f(b)≥f(-a)+f(-b)。其中正确的不等式序号是(   )
A.①②④B.①④C.②④D.①③

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数f(x)=ax2-bx+1.
(1)若f(x)<0的解集是(
1
4
1
3
)
,求实数a,b的值;
(2)若a+b+2=0,且函数f(x)>3x+1,x∈(0,1)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设f(x)是R上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
(Ⅰ)求f(π)的值;
(Ⅱ)作出当-4≤x≤4时函数f(x)的图象,并求它与x轴所围成图形的面积;
(Ⅲ)直接写出函数f(x)在R上的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=-x2+a(5-a)x+b.
(1)若不等式f(x)>0的解集为(-1,7)时,求实数a,b的值;
(2)当a∈[-1,2)时,f(3)<0恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ln
x+1
x-1

(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;
(2)对于x∈[2,6],f(x)=ln
x+1
x-1
>ln
m
(x-1)(7-x)
恒成立,求实数m取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=loga丨x+b丨在定义域内具有奇偶性,f(b-2)与f(a+1)的大小关系是(  )
A.f(b-2)=f(a+1)B.f(b-2)>f(a+1)C.f(b-2)<f(a+1)D.不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)是(-∞,+∞)上的奇函数,x∈[0,2)时,f(x)=x2,若对于任意x∈R,都有f(x+4)=f(x),则f(2)-f(3)的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

偶函数f(x)在区间[0,+∞)的图象如右,则函数f(x)的单调增区间为______.

查看答案和解析>>

同步练习册答案