精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-2,g(x)=xlnx,,
(1)若对一切x∈(0,+∞),2g(x)≥ax-5-f(x)恒成立,求实数a的取值范围;
(2)试判断方程ln(1+x2)-
1
2
f(x)-k=0
有几个实根.
(1)若对一切x∈(0,+∞),2g(x)≥ax-5-f(x)恒成立,
即2xlnx+x2-ax+3≥0在x∈(0,+∞)恒成立,∴a≤2lnx+x+
3
x
在x∈(0,+∞)恒成立,
F(x)=2lnx+x+
3
x
,则F′(x)=
2
x
+1-
3
x2
=
(x+3)(x-1)
x2
,F'(x)=0时x=1,F(x)在(0,1)递减,在(1,+∞)递增,∴Fmin=F(1)=4,∴只需a≤4.
(2)将原方程化为ln(1+x2)-
1
2
x2+1=k

G(x)=ln(1+x2)-
1
2
x2+1
,为偶函数,且G(0)=1,x>0时G′(x)=
-x(x+1)(x-1)
x2+1


∴G(x)max=
1
2
+ln2,且x→+∞,y→-∞∴k>
1
2
+ln2
时,无解;k=
1
2
+ln2
或k=1时,三解;1<k<
1
2
+ln2
,四解;k<1时,两解.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设f(x)是R上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
(Ⅰ)求f(π)的值;
(Ⅱ)作出当-4≤x≤4时函数f(x)的图象,并求它与x轴所围成图形的面积;
(Ⅲ)直接写出函数f(x)在R上的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ln
x+1
x-1

(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;
(2)对于x∈[2,6],f(x)=ln
x+1
x-1
>ln
m
(x-1)(7-x)
恒成立,求实数m取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=loga丨x+b丨在定义域内具有奇偶性,f(b-2)与f(a+1)的大小关系是(  )
A.f(b-2)=f(a+1)B.f(b-2)>f(a+1)C.f(b-2)<f(a+1)D.不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(Ⅰ)已知f(x)=
2
3x-1
+k
是奇函数,求常数k的值.;
(Ⅱ)已知函数f(x)=x|x-m|(x∈R)且f(4)=0.
①求实数m的取值.
②如图,作出函数f(x)的图象并写出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)是(-∞,+∞)上的奇函数,x∈[0,2)时,f(x)=x2,若对于任意x∈R,都有f(x+4)=f(x),则f(2)-f(3)的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知y=f(x)是偶函数,y=g(x)是奇函数,它们的定义域都是[-3,3],且它们在x∈[0,3]上的图象如图所示,则不等式f(x)•g(x)<0的解集为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知定义在(-1,1)上的偶函数f(x)在(0,1)上单调递增,则满足f(2x-1)<f(x)的x的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

奇函数定义域是,则        .

查看答案和解析>>

同步练习册答案