精英家教网 > 高中数学 > 题目详情
f(x)定义在R上的偶函数,在区间(-∞,0]上递增,且有f(2a2+a+1)<f(3a2-2a+1),求a的取值范围.
法1
2a2+a+1=2(a+
1
4
)2+
7
8
7
8

3a2-2a+1=3(a-
1
3
)2+
2
3
2
3
(4分)

f(x)定义在R上的偶函数,在区间(-∞,0]上递增
因此函数f(x)在[0,+∞)上递减(6分)
又f(2a2+a+1)<f(3a2-2a+1)
2a2+a+1>3a2-2a+1(10分)
∴a2-3a<0∴0<a<3.(12分)
法2:2a2+a+1=2(a+
1
4
)2+
7
8
7
8

3a2-2a+1=3(a-
1
3
)2+
2
3
2
3
(4分)

又f(x)定义在R上的偶函数,且
f(2a2+a+1)<f(3a2-2a+1)
∴f(-2a2-a-1)<f(-3a2+2a-1)(6分)
又f(x)在区间(-∞,0]上递增
∴-2a2-a-1<-3a2+2a-1(10分)
∴a2-3a<0∴0<a<3.(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
px2+2
-3x
,且f(2)=-
5
3

(1)求函数f(x)的解析式;
(2)判断f(x)的奇偶性;
(3)判断函数f(x)在区间(0,1)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果奇函数f(x)在区间[3,7]上是增函数且最大值为5,那么f(x)在区间[-7,-3]上是(  )
A.增函数且最小值为-5B.增函数且最大值为-5
C.减函数且最大值是-5D.减函数且最小值是-5

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x+
a
x

(1)证明函数f(x)是奇函数;
(2)若a=1,求证函数在区间[1,+∞)上单调递增;
(3)若函数在区间[1,+∞)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)是偶函数,且它在[0,+∞)上是减函数,若f(lgx)>f(1),则x的取值围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知偶函数f(x)的定义域为{x|x≠0,x∈R},且f(3)=0则不等式f(x)<0的解集为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3+bx2+cx是R上的奇函数,且f(1)=3,f(2)=12;
(1)求a,b,c的值;
(2)若(a-1)3+2a-4=0,(b-1)3+2b=0,求a+b的值;
(3)若关于x的不等式f(x2-4)+f(kx+2k)<0在(0,1)上恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=a-
1
|2x-b|
是偶函数,a为实常数.
(1)求b的值;
(2)当a=1时,是否存在m,n(n>m>0)使得函数y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],若存在,求出m,n的值,否则,说明理由;
(3)若在函数定义域内总存在区间[m,n](m<n),使得y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知实数,函数,若,则的值为     

查看答案和解析>>

同步练习册答案