精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2+cx是R上的奇函数,且f(1)=3,f(2)=12;
(1)求a,b,c的值;
(2)若(a-1)3+2a-4=0,(b-1)3+2b=0,求a+b的值;
(3)若关于x的不等式f(x2-4)+f(kx+2k)<0在(0,1)上恒成立,求k的取值范围.
(1)由f(-x)=-f(x)得:b=0,
又f(1)=a+c=3,f(2)=8a+2c=12,
解得:a=1,c=2;
∴a=1,b=0,c=2;
(2))∵f(x)=x3+2x,
又(a-1)3+2a-4=0,(b-1)3+2b=0,
∴(a-1)3+2(a-1)=2,(b-1)3+2(b-1)=-2,
∴f(a-1)=2且f(b-1)=-2,
即f(a-1)=-f(b-1),
∴f(a-1)=f(1-b),
∵f′(x)=3x2+2>0,故f(x)=x3+2x为增函数,
∴a-1=1-b,
∴a+b=2.
(3)∵f(x2-4)+f(kx+2k)<0在(0,1)上恒成立,即f(x2-4)<f(-kx-2k)在(0,1)上恒成立,
即x2-4<-kx-2k在(0,1)上恒成立,
即x2+kx+2k-4<0在(0,1)上恒成立,
令g(x)=x2+kx+2k-4,
g(0)≤0
g(1)≤0
,即
2k-4≤0
3k-3≤0

解得:k≤1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

偶函数f(x)在区间[0,+∞)的图象如右,则函数f(x)的单调增区间为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列判断正确的是(  )
A.定义在R上的函数f(x),若f(-1)=f(1),且f(-2)=f(2),则f(x)是偶函数
B.定义在R上的函数f(x)满足f(2)>f(1),则f(x)在R上不是减函数
C.定义在R上的函数f(x)在区间(-∞,0]上是减函数,在区间(0,+∞)上也是减函数,则f(x)在R上是减函数
D.既是奇函数又是偶函数的函数有且只有一个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

f(x)定义在R上的偶函数,在区间(-∞,0]上递增,且有f(2a2+a+1)<f(3a2-2a+1),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)是定义在R上的偶函数,且在[0,+∞)上是增函数,则一定有(  )
A.f(-
3
4
)>f(a4+a2+1)
B.f(-
3
4
)
≥f(a4+a2+1)
C.f(-
3
4
)<f(a4+a2+1)
D.f(-
3
4
)
≤f(a4+a2+1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知偶函数f(x)在[0,+∞)上单调递减,则f(1)和f(-10)的大小关系为(  )
A.f(1)>f(-10)B.f(1)<f(-10)
C.f(1)=f(-10)D.f(1)和f(-10)关系不定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知对任意x∈R,恒有f(-x)=-f(x),g(-x)=g(x),且当x>0时,f′(x)>0,g′(x)>0,则当x<0时有(  )
A.f′(x)>0,g′(x)>0B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0D.f′(x)<0,g′(x)<0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义域为R的函数f(x)=
-2x+a
2x+1
是奇函数,
(1)求a值,并判断f(x)的单调性(不需证明);
(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)=,那么f(2 013)=________.

查看答案和解析>>

同步练习册答案