精英家教网 > 高中数学 > 题目详情
已知定义域为R的函数f(x)=
-2x+a
2x+1
是奇函数,
(1)求a值,并判断f(x)的单调性(不需证明);
(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.
(1)∵定义域为R的函数f(x)=
-2x+a
2x+1
是奇函数,
f(0)=
-1+a
2
=0

∴a=1,
f(x)=
1-2x
1+2x

经验证,f(x)为奇函数,
∴a=1,
函数f(x)为减函数.
(2)由f(t2-2t)+f(2t2-k)<0得f(t2-2t)<-f(2t2-k),
∵f(x)是奇函数,
∴f(t2-2t)<f(k-2t2),
由(1),f(x)是减函数,
∴原问题转化为t2-2t>k-2t2
即3t2-2t-k>0对任意t∈R恒成立
∴△=4+12k<0,
k<-
1
3
即为所求.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x+
a
x

(1)证明函数f(x)是奇函数;
(2)若a=1,求证函数在区间[1,+∞)上单调递增;
(3)若函数在区间[1,+∞)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3+bx2+cx是R上的奇函数,且f(1)=3,f(2)=12;
(1)求a,b,c的值;
(2)若(a-1)3+2a-4=0,(b-1)3+2b=0,求a+b的值;
(3)若关于x的不等式f(x2-4)+f(kx+2k)<0在(0,1)上恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=a-
1
|2x-b|
是偶函数,a为实常数.
(1)求b的值;
(2)当a=1时,是否存在m,n(n>m>0)使得函数y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],若存在,求出m,n的值,否则,说明理由;
(3)若在函数定义域内总存在区间[m,n](m<n),使得y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数y=f(x)在R上是偶函数,当x>0时,f(x)=2x-x2,则当x<0时,f(x)=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义在区间[-
2
3
π,π]上的函数y=f(x)的图象关于直线x=
π
6
对称,当x∈[-
2
3
π,
π
6
]时,函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),其图象如图所示.

(Ⅰ)求函数y=f(x)在[-
2
3
π,π]的表达式;
(Ⅱ)求方程f(x)=
2
的解;
(Ⅲ)是否存在常数m的值,使得|f(x)-m|<2在x∈[-
3
,π]上恒成立;若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函数f(x)在R上单调递增,求实数a的取值范围;
(3)是否存在实数a,使得g(x)=f(x)-x|x|在R上是奇函数或是偶函数?若存在,求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知实数,函数,若,则的值为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数f(x)=则f(f(10))=(  )
A.lg101B.2C.1D.0

查看答案和解析>>

同步练习册答案