精英家教网 > 高中数学 > 题目详情
10.设等差数列{an}的前n项和为Sn,若S8=4a3,a9=-6,则a7=-2.

分析 通过S8=4a3、a9=-6,计算即得结论.

解答 解:设等差数列{an}的公差为d,
则由S8=4a3,可得:8a1+$\frac{8(8-1)}{2}•d$=4(a1+2d),
化简得:a1+5d=0,
又∵a9=-6,∴a1+8d=-6,
∴a1=10,d=-2,
∴a7=a1+6d=10-12=-2,
故答案为:-2.

点评 本题考查求等差数列的通项,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届河南商丘第一高级中学年高三上理开学摸底数学试卷(解析版) 题型:解答题

在一次篮球定点投篮训练中,规定每人最多投3次.在处每投进一球得3分;在处每投进一球得2分.如果前两次得分之和超过3分就停止投篮;否则投第三次. 某同学在处的投中率,在处的投中率为.该同学选择先在处投一球,以后都在处投,且每次投篮都互不影响.用表示

该同学投篮训练结束后所得的总分,其分布列为:

0

2

3

4

5

0.03

(1)求的值;

(2)求随机变量的数学期望

(3)试比较该同学选择上述方式投篮得分超过3分与选择都在处投篮得分超过3分的概率的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知定点F(3,0)和动点P(x,y),H为PF的中点,O为坐标原点,且满足|OH|-|HF|=2.
(1)求点P的轨迹方程;
(2)过点F作直线l与点P的轨迹交于A,B两点,点C(2,0).连接AC,BC与直线x=$\frac{4}{3}$分别交于点M,N.试证明:以MN为直径的圆恒过点F.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆E的中心在坐标原点O,其焦点与双曲线C:x2-$\frac{y^2}{2}$=1的焦点重合,且椭圆E的短轴的两个端点与其一个焦点构成正三角形.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过双曲线C的右顶点A作直线l与椭圆E交于不同的两点P、Q.设点M(4,3),记直线PM、QM的斜率分别为k1,k2,求证:k1+k2为定值,求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C经过点P($\sqrt{3}$,$\frac{1}{2}$),两焦点分别为F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0)
(1)求椭圆C的标准方程
(2)已知点A(0,-1),直线l与椭圆C交于两点M,N,若△AMN是以A为直角顶点的等腰直角三角形,试求直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=ex+ax+b在点(0,f(0))处的切线方程为x+y+1=0.
(Ⅰ)求a,b值,并求f(x)的单调区间;
(Ⅱ)证明:当x≥0时,f(x)>x2-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.十八世纪,法国数学家布丰和勒可莱尔提出投针问题:在平面上画有一组间距为a的平行线,将一根长度为l的针任意掷在这个平面上,求得此针与平行线中任一条相交的概率p=$\frac{2l}{πa}$(π为圆周率).已知l=3.14,a=6,π≈3.14,现随机掷14根相同的针(长度为l)在这个平面上,记这些针与平行线(间距为a)相交的根数为m,其相应的概率为p(m).当p(m)取得最大值时,m=4或5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知F1,F2是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,P是C上一点,若|PF1|•|PF2|=8a2,且△PF1F2的最小内角为30°,则双曲线C的离心率是(  )
A.$\sqrt{2}$B.2C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=($\sqrt{3}$sin2x,sinx+cosx),$\overrightarrow{b}$=(1,sinx-cosx),其中x∈R,记函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$.
(1)求f(x)的最小正周期;
(2)若f($\frac{θ}{2}$)=$\frac{\sqrt{3}}{2}$,且$\frac{2π}{3}$<θ<$\frac{7π}{6}$,求cosθ的值.

查看答案和解析>>

同步练习册答案