精英家教网 > 高中数学 > 题目详情
5.已知椭圆C经过点P($\sqrt{3}$,$\frac{1}{2}$),两焦点分别为F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0)
(1)求椭圆C的标准方程
(2)已知点A(0,-1),直线l与椭圆C交于两点M,N,若△AMN是以A为直角顶点的等腰直角三角形,试求直线l方程.

分析 (1)通过焦点坐标可设椭圆C的标准方程且a2-b2=3,将点P($\sqrt{3}$,$\frac{1}{2}$)代入椭圆方程,计算即得结论;
(2)通过△AMN是以A为直角顶点的等腰直角三角形可得直线l与x轴平行,利用kAM•kAN=-1计算即可.

解答 解:(1)∵两焦点分别为F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),
∴可设椭圆C的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),a2-b2=3,①
又∵椭圆C经过点P($\sqrt{3}$,$\frac{1}{2}$),
∴$\frac{3}{{a}^{2}}+\frac{1}{4{b}^{2}}=1$,②
联立①②,解得a2=4,b2=1,
∴椭圆C的标准方程为:$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(2)由(1)知,点A(0,-1)即为椭圆的下顶点,
∵△AMN是以A为直角顶点的等腰直角三角形,
∴直线l与x轴平行,设直线l方程为y=t(-1<t<1),
则M(-2$\sqrt{1-{t}^{2}}$,t),N(2$\sqrt{1-{t}^{2}}$,t),
∵kAM=-$\frac{t+1}{2\sqrt{1-{t}^{2}}}$,kAN=$\frac{t+1}{2\sqrt{1-{t}^{2}}}$,
∴kAM•kAN=-$\frac{t+1}{2\sqrt{1-{t}^{2}}}$•$\frac{t+1}{2\sqrt{1-{t}^{2}}}$=-1,
解得:t=$\frac{3}{5}$或t=-1(舍),
∴直线l方程为:y=$\frac{3}{5}$.

点评 本题考查椭圆的定义及标准方程,考查直线与椭圆的位置关系,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届河南商丘第一高级中学年高三上理开学摸底数学试卷(解析版) 题型:解答题

选修4-4:坐标系与参数方程

在直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知点的极坐标为,曲线的参数方程为为参数).

(1)直线且与曲线相切,求直线的极坐标方程;

(2)点与点关于轴对称,求曲线 上的点到点的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北邢台市高一上学期月考一数学试卷(解析版) 题型:选择题

是集合到集合的映射,若,则等于( )

A.-4 B.-1

C.0 D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.(x+$\frac{1}{x}$-2)9展开式中x3的系数为(  )
A.${C}_{9}^{3}$B.${C}_{18}^{3}$C.${C}_{9}^{4}$D.${C}_{18}^{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.平面直角坐标系xOy中,过椭圆M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)过右焦点的直线$x+y-\sqrt{3}=0$交M于A,B两点,P为AB的中点,且OP的斜率为$\frac{1}{2}$.
(1)求椭圆M的方程;
(2)若C,D为椭圆M上的两点,且CD⊥AB,求|CD|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设等差数列{an}的前n项和为Sn,若S8=4a3,a9=-6,则a7=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知O为坐标原点,椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的短轴长为2,F为其右焦点,P为椭圆上一点,且PF与x轴垂直,$\overrightarrow{OF}•\overrightarrow{OP}=3$.
(1)求椭圆C的方程;
(2)直线l与椭圆C交于不同的两点A、B,若以AB为直径的圆恒过原点O,求|AB|弦长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设变量x,y满足约束条件$\left\{\begin{array}{l}{2x-y-7≥0}\\{x+y-8≥0}\\{x-2y-2≤0}\end{array}\right.$,则目标函数z=x2+y2的最小值为(  )
A.32B.17C.40D.34

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知x>0,y>0,2x+y=1,若4x2+y2+$\sqrt{xy}$-m<0恒成立,则m的取值范围是$m>\frac{17}{16}$.

查看答案和解析>>

同步练习册答案