精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中, 平面平面 分别为中点.

1)求证:

2)求二面角的大小.

【答案】(1)证明见解析;(2)60°.

【解析】试题分析:

1)连结PD由题意可得,AB⊥平面PDE

2)法一结合几何关系做出二面角的平面角,计算可得其正切值为,故二面角的大小为

法二:以D为原点建立空间直角坐标系,计算可得平面PBE的法向量.平面PAB的法向量为据此计算可得二面角的大小为.

试题解析:

1)连结PDPA=PBPDAB BCABDEAB

AB平面PDEPE平面PDE

ABPE

2)法一

平面PAB平面ABC平面PAB平面ABC=ABPDABPD平面ABC

DEPD,EDABPD平面AB=DDE平面PAB,

DDF垂直PBF,连接EF,则EFPBDFE为所求二面角的平面角

DE=DF=,则,故二面角的大小为

法二:

平面PAB平面ABC平面PAB平面ABC=ABPDABPD平面ABC

如图,以D为原点建立空间直角坐标系

B(100)P(00)E(0 0)

=(10 ) =(0 ).

设平面PBE的法向量

,得

DE平面PAB 平面PAB的法向量为

设二面角的大小为,由图知,

所以即二面角的大小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数yfx)的定义域为R,并且满足fx+y)=fx)+fy),f)=1,当x>0时,fx)>0.

(1)求f(0)的值;

(2)判断函数的奇偶性;

(3)如果fx)+f(2+x)<2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线 (a>0,b>0)的左右焦点分别为F1 , F2渐近线分别为l1 , l2 , 位于第一象限的点P在l1上,若l2⊥PF1 , l2∥PF2 , 则双曲线的离心率是(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年1月1日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如表:

生二胎

不生二胎

合计

70后

30

15

45

80后

45

10

55

合计

75

25

100


(1)以这100个人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中随机抽取3位,记其中生二胎的人数为X,求随机变量X的分布列和数学期望;
(2)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由.
参考数据:

P(K2>k)

0.15

0.10

0.05

0.025

0.010

0.005

k

2.072

2.706

3.841

5.024

6.635

7.879

(参考公式: ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中ABC﹣A1B1C1中,点A1在平面ABC内的射影D为棱AC的中点,侧面A1ACC1为边长为2的菱形,AC⊥CB,BC=1.

(1)证明:AC1⊥平面A1BC;
(2)求二面角B﹣A1C﹣B1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的奇函数,当时, ,则关于的函数的所有零点之和为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆锥曲线C的极坐标方程为p2= ,定点A(0,﹣ ),F1 , F2是圆锥曲线C的左、右焦点,直线l经过点F1且平行于直线AF2
(1)求圆锥曲线C的直角坐标方程和直线l的参数方程;
(2)若直线l与圆锥曲线C交于M,N两点,求|F1M||F1N|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥C的底面是正方形,PA⊥平面ABCD,PA=2,∠PDA=45°,点E、F分别为棱AB、PD的中点.

(1)求证:AF∥平面PEC

(2)求证:平面PCD⊥平面PEC;

(3)求三棱锥C-BEP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示几何体ABC﹣A1B1C1中,A1、B1、C1在面ABC上的射影分别是线段AB、BC、AC的中点,面A1B1C1∥面ABC,△ABC是边长为2的等边三角形.

(1)求证:△A1B1C1是等边三角形;
(2)若面ACB1A1⊥面BA1B1 , 求该几何体ABC﹣A1B1C1的体积;
(3)在(2)的条件下,求面ABC与面A1B1B所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案