精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱中ABC﹣A1B1C1中,点A1在平面ABC内的射影D为棱AC的中点,侧面A1ACC1为边长为2的菱形,AC⊥CB,BC=1.

(1)证明:AC1⊥平面A1BC;
(2)求二面角B﹣A1C﹣B1的大小.

【答案】
(1)解:由题意得A1D⊥平面ABC,

∴平面A1ACC1⊥平面ABC,

∵平面A1ACC1∩平面ABC=AC,CA⊥CB

∴BC⊥平面A1ACC1

∴BC⊥AC1

连接A1C

∵侧面A1ACC1为菱形

∴A1C⊥AC1

∴AC1⊥平面A1BC,


(2)解:直角三角形A1AD中,

∵AA1=2,AD=1,∴A1D=

过C作CM∥A1D交A1C1于M点,

分别以C为坐标原点,以CA,CB,CM的方向为x轴,y轴,z轴正方向建立如图所示的空间直角坐标系C﹣xyz,

则C(0,0,0),B(0,1,0),D(1,0,0),A(2,0,0),A1(1,0, ),

= ,得C1(﹣1,0, ),∴ =(﹣3,0, ),

= 得B1(﹣1,1, ),∴ =(﹣1,1, ), =(1,0, ),设平面A1B1C的一个法向量为 =(x,y,z),

令z=1,解得 =(﹣ ,﹣2 ,1)

由题得 = =(﹣3,0, )为平面A1BC的一个法向量, cos< >= = = =

则< >=

因此二面角B﹣A1C﹣B1的大小为


【解析】(1)根据线面垂直的判定定理即可得到结论.(2)建立坐标系,求出平面的法向量,利用向量法进行求解即可.
【考点精析】认真审题,首先需要了解直线与平面垂直的判定(一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资根据长期收益率市场预测投资类产品的收益与投资额成正比投资类产品的收益与投资额的算术平方根成正比已知投资1万元时两类产品的收益分别为0125万元和05万元

1分别写出两类产品的收益与投资额的函数关系;

2该家庭有20万元资金全部用于理财投资问:怎么分配资金能使投资获得最大收益其最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但蔬菜上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水(单位:千克)清洗蔬菜1千克后,蔬菜上残留的农药(单位:微克)的统计表:

1

2

3

4

5

58

54

39

29

10

(1)在答题纸的坐标系中,描出散点图,并判断变量是正相关还是负相关;

(2)若用解析式作为蔬菜农药残量与用水量的回归方程,令,计算平均值,完成以下表格(填在答题卡中),求出的回归方程.( 保留两位有效数字):

1

4

9

16

25

58

54

39

29

10

(3)对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请评估需要用多少千克的清水清洗一千克蔬菜?(精确到0.1,参考数据)(附:对于一组数据 ,……, ,其回归直线的斜率和截距的最小二乘法估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家规定个人稿费缴纳方法为:不超过800元的不纳税,超过800元而不超过4000元的按超过800元部分的14%纳税,超过4000元的按全部稿酬的11.2%纳税(本题中稿费均指纳税前稿费).

(Ⅰ)某人出了一本书,获得30000元的个人稿费,则这个人需要纳税是多少元?

(Ⅱ)试建立某人所得稿费x元与纳税额y元的函数关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的一个上界.已知函数 .

(1)若函数为奇函数,求实数的值;

(2)在(1)的条件下,求函数在区间上的所有上界构成的集合;

(3)若函数上是以3为上界的有界函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 平面平面 分别为中点.

1)求证:

2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(2,0),B(0,2),,O为坐标原点.

(1),求sin 2θ的值;

(2)若,且θ∈(-π,0),求的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知梯形ABCD中,ADBCABC =BAD =AB=BC=2AD=4EF分别是ABCD上的点,EFBCAE = GBC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF

1)若以FBCD为顶点的三棱锥的体积记为,求的最大值;

2)当 取得最大值时,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,若函数

1)若,求的极大值与极小值。

2)若函数在区间上是增函数,求的范围。

查看答案和解析>>

同步练习册答案