精英家教网 > 高中数学 > 题目详情
如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点,求证:
(1)EF⊥A1C   
(2)平面A B1D1∥平面EFG.
分析:(1)连结BD,可得EF∥BD,正方形ABCD中,证出EF⊥AC.利用线面垂直的定义,证出AA1⊥EF,根据线面垂直判定定理得到EF⊥平面AA1C,再由A1C是平面AA1C内的直线,可得EF⊥A1C;
(2)连结C1D,利用三角形中位线定理和正方体的性质,证出FG∥AB1,从而得出FG∥平面AB1D1,同理可得EF∥平面AB1D1,由面面平行判定定理可得平面A B1D1∥平面EFG.
解答:解:(1)连结BD,
∵EF为△BCD的中位线,∴EF∥BD,
∵四边形ABCD为正方形,得BD⊥AC,∴EF⊥AC,
又∵正方体中,AA1⊥面ABCD,EF?面ABCD,∴AA1⊥EF,
∵AA1、AC是平面AA1C内的相交直线,
∴EF⊥平面AA1C,
又∵A1C?平面EFG,∴EF⊥A1C.
(2)连结C1D
∵△CC1D中,F、G分别是CD、CC1的中点,∴FG∥C1D
∵正方体ABCD-A1B1C1D1中,AD
.
B1C1
∴四边形ADB1C1是平行四边形,可得AB1∥C1D
因此FG∥AB1
∵FG?平面AB1D1,AB1?平面AB1D1,∴FG∥平面AB1D1
同理可得EF∥平面AB1D1
∵FG、EF为平面EFG内的相交直线,∴平面A B1D1∥平面EFG.
点评:本题在正方体中证明线面垂直和面面平行.着重考查了正方体的性质、线面垂直的判定与性质、面面平行与垂直的判定定理等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,类比平面几何中的结论,得到此三棱锥中的一个正确结论为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,
(1)求证:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的主视图与左视图的面积的比值为(  )

查看答案和解析>>

同步练习册答案