精英家教网 > 高中数学 > 题目详情
已知过抛物线的焦点且斜率为的直线与抛物线交于两点,且,则                   .
3

试题分析:由题意知,直线的方程为y=(x-),与抛物线C:联立
得3x2-5px+=0,∴交点的横坐标为x=或x=
∵|FA|>|FB|,根据抛物线的定义得|FA|=2p,|FB|=,∴=3.
点评:中档题,涉及直线与抛物线的位置关系,一般通过联立方程组,寻求解题所需条件。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设抛物线的焦点为,经过点的动直线交抛物线于点.
(1)求抛物线的方程;
(2)若(为坐标原点),且点在抛物线上,求直线倾斜角;
(3)若点是抛物线的准线上的一点,直线的斜率分别为.求证:
为定值时,也为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知抛物线的焦点为,过焦点且不平行于轴的动直线交抛物线于两点,抛物线在两点处的切线交于点.

(Ⅰ)求证:三点的横坐标成等差数列;
(Ⅱ)设直线交该抛物线于两点,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若焦点在轴上的椭圆的离心率为,则的值为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的离心率为.双曲线的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆的方程为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的长轴长为,焦点是,点到直线的距离为,过点且倾斜角为锐角的直线与椭圆交于A、B两点,使得|=3|.
(1)求椭圆的标准方程;         
(2)求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是椭圆的左、右焦点,O为坐标原点,点P在椭圆上,线段与y轴的交点M满足
(Ⅰ) 求椭圆的标准方程;
(Ⅱ) 圆O是以为直径的圆,直线与圆相切,并与椭圆交于不同的两点,当,且满足时,求直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从双曲线的左焦点引圆的切线,切点为,延长交双曲线右支于点,若为线段的中点,为坐标原点,则的大小关系为(   )
A.B.
C.D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是双曲线的左、右焦点,过且垂直于轴的直线与双曲线交于两点,若△是锐角三角形,则该双曲线离心率的取值范围是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案