精英家教网 > 高中数学 > 题目详情
从双曲线的左焦点引圆的切线,切点为,延长交双曲线右支于点,若为线段的中点,为坐标原点,则的大小关系为(   )
A.B.
C.D.不确定
B

试题分析:点P置于第一象限.设F1是双曲线的右焦点,连接PF1.由M、O分别为FP、FF1的中点,知|MO|=|PF1|.由双曲线定义,知|PF|-|PF1|=2a,|FT|=
=b.由此知|MO|-|MT|=(|PF1|-|PF|)+|FT|=b-a
解:将点P置于第一象限.

设F1是双曲线的右焦点,连接PF1,∵M、O分别为FP、FF1的中点,∴|MO|=|PF1|,又由双曲线定义得, |PF|-|PF1|=2a, |FT|==b.故|MO|-|MT|=|PF1|-|MF|+|FT|=(|PF1|-|PF|)+|FT|=b-a.故选C.
点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与双曲线的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

若椭圆的左、右焦点分别为F1,F2,椭圆的离心率为:2.(1)过点C(-1,0)且以向量为方向向量的直线交椭圆于不同两点A、B,若,则当△OAB的面积最大时,求椭圆的方程。
(2)设M,N为椭圆上的两个动点,,过原点O作直线MN的垂线OD,垂足为D,求点D的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


已知抛物线和椭圆都经过点,它们在轴上有共同焦点,椭圆的对称轴是坐标轴,抛物线的顶点为坐标原点.
(1)求这两条曲线的方程;
(2)对于抛物线上任意一点,点都满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知过抛物线的焦点且斜率为的直线与抛物线交于两点,且,则                   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

存在两条直线与双曲线相交于ABCD四点,若四边形ABCD是正方形,则双曲线的离心率的取值范围为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若双曲线的渐近线方程为,它的一个焦点是,则双曲线的标准方程是           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线的焦点为,准线与轴的交点为,点上且,则△的面积为(   )
A.4 B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过点的直线交直线,过点的直线轴于点,.
(1)求动点的轨迹的方程;
(2)设直线l与相交于不同的两点,已知点的坐标为(-2,0),点Q(0,)在线段的垂直平分线上且≤4,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与抛物线相切倾斜角为的直线L与x轴和y轴的交点分别是A和B,那么过A、B两点的最小圆截抛物线的准线所得的弦长为
A.4                B.2        C.2            D. 

查看答案和解析>>

同步练习册答案