精英家教网 > 高中数学 > 题目详情
设抛物线的焦点为,经过点的动直线交抛物线于点.
(1)求抛物线的方程;
(2)若(为坐标原点),且点在抛物线上,求直线倾斜角;
(3)若点是抛物线的准线上的一点,直线的斜率分别为.求证:
为定值时,也为定值.
(1)(2)倾斜角为 (3)

试题分析:⑴根据题意可知:,设直线的方程为:,则:
联立方程:,消去可得:(*),
根据韦达定理可得:,∴,∴
⑵设,则:,由(*)式可得:

,∴

,∴,∴,∴
∴直线的斜率,∴倾斜角为
⑶可以验证该定值为,证明如下:
,则:
,∴




为定值
点评:考查了直线与抛物线的位置关系的运用,体现了运用代数的方法求解解析几何的运用,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知过抛物线的焦点且斜率为的直线与抛物线交于两点,且,则                   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过点的直线交直线,过点的直线轴于点,.
(1)求动点的轨迹的方程;
(2)设直线l与相交于不同的两点,已知点的坐标为(-2,0),点Q(0,)在线段的垂直平分线上且≤4,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

ABC的两个顶点坐标分别是B(0,6)和C(0,-6),另两边ABAC的斜率的乘积是-,求顶点A的轨迹方程.?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知抛物线的焦点在抛物线上,点是抛物线上的动点.

(Ⅰ)求抛物线的方程及其准线方程;
(Ⅱ)过点作抛物线的两条切线,分别为两个切点,设点到直线的距离为,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点是F抛物线与椭圆的公共焦点,且椭圆的离心率为

(1)求椭圆的方程;
(2)过抛物线上一点P,作抛物线的切线,切点P在第一象限,如图,设切线与椭圆相交于不同的两点A、B,记直线OP,FA,FB的斜率分别为(其中为坐标原点),若,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与抛物线相切倾斜角为的直线L与x轴和y轴的交点分别是A和B,那么过A、B两点的最小圆截抛物线的准线所得的弦长为
A.4                B.2        C.2            D. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在直线上,若存在过的直线交抛物线两点,且,则称点为“点”,那么下列结论中正确的是(   )
A.直线上的所有点都是“点”B.直线上仅有有限个点是“点”
C.直线上的所有点都不是“点”D.直线上有无穷多个点是“点”

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆左焦点且不垂直于x轴的直线交椭圆于AB两点,AB的垂直平分线交x轴于点,则       

查看答案和解析>>

同步练习册答案