精英家教网 > 高中数学 > 题目详情
8.在△ABC中,角A、B、C的对边分别是a、b、c.若$A=\frac{π}{4},B-C=\frac{π}{2},a=\sqrt{2}$,则△ABC的面积为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

分析 由题意和内角和定理求出B、C,由正弦定理求出b,代入三角形的面积公式后,利用二倍角的正弦公式化简,即可求出△ABC的面积.

解答 解:∵$A=\frac{π}{4},B-C=\frac{π}{2}$,A+B+C=π,
∴$\frac{π}{4}+\frac{π}{2}+C+C=π$,解得C=$\frac{π}{8}$,则B=$\frac{5π}{8}$,
由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$得:b=$\frac{a•sinB}{sinA}$=$\frac{\sqrt{2}•sin\frac{5π}{8}}{\frac{\sqrt{2}}{2}}$=$2sin\frac{5π}{8}$,
∴△ABC的面积S=$\frac{1}{2}absinC$=$\frac{1}{2}×\sqrt{2}×2sin\frac{5π}{8}×sin\frac{π}{8}$
=$\frac{1}{2}×\sqrt{2}×2cos\frac{π}{8}×sin\frac{π}{8}$=$\frac{1}{2}×\sqrt{2}×sin\frac{π}{4}$=$\frac{1}{2}$,
故选:B.

点评 本题考查正弦定理,二倍角的正弦公式,以及三角形的面积公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.对于R上可导的任意函数f(x),若满足(x-1)f′(x)≤0,则必有(  )
A.f(-3)+f(3)<2f(1)B.f(-3)+f(7)>2f(1)C.f(-3)+f(3)≤2f(1)D.f(-3)+f(7)≥2f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知可导函数f(x)(x∈R)的导函数f′(x)满足f′(x)>f(x),则当a≥0时,f(a)和eaf(0)(e是自然对数的底数)大小关系为(  )
A.f(a)≥eaf(0)B.f(a)>eaf(0)C.f(a)≤eaf(0)D.f(a)<eaf(0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)的导函数图象如图所示,若△ABC为钝角三角形,且∠C为钝角,则一定成立的是(  )
A.f(cosA)<f(cosB)B.f(sinA)<f(cosB)C.f(sinA)>f(cosB)D.f(sinA)>f(sinB)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}:$\frac{1}{1}$,$\frac{1}{1+2}$,$\frac{1}{1+2+3}$,…$\frac{1}{1+2+3+…n}$,…,求它的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.写出命题“如果x=3或x=7,则(x-3)(x-7)=0”的逆命题、否命题和逆否命题,并判断真假.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=eax(其中e=2.71828…),$g(x)=\frac{f(x)}{x}$.
(1)若g(x)在[1,+∞)上是增函数,求实数a的取值范围;
(2)当$a=\frac{1}{2}$时,求函数g(x)在[m,m+1](m>0)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线$x=\frac{π}{8}$,则φ=-$\frac{3π}{4}$,y=f(x)的单调增区间是-$\frac{3π}{4}$,[$\frac{π}{8}$+kπ,$\frac{5π}{8}$+kπ],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.用数学归纳法证明下列等式:$\frac{1}{1×4}+\frac{1}{4×7}+\frac{1}{7×10}+…+\frac{1}{(3n-2)(3n+1)}=\frac{n}{3n+1}$,n∈N*

查看答案和解析>>

同步练习册答案