精英家教网 > 高中数学 > 题目详情
3.已知数列{an}:$\frac{1}{1}$,$\frac{1}{1+2}$,$\frac{1}{1+2+3}$,…$\frac{1}{1+2+3+…n}$,…,求它的前n项和.

分析 根据数列归纳总结得到通项公式,利用拆项法变形,即可表示出它的前n项和.

解答 解:∵an=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
∴Sn=a1+a2+a3+…+an
=2[(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$)]
=2(1-$\frac{1}{n+1}$)
=$\frac{2n}{n+1}$.

点评 此题考查了数列的求和,灵活运用拆项法是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设偶函数f(x)的导函数是f′(x)且f(e)=0,当x>0时,有[f′(x)-f(x)]ex>0成立,则使得f(x)>0的x的取值范围是(  )
A.(-e,e)B.(-∞,-e)∪(e,+∞)C.(-∞,-e)∪(0,e)D.(-e,0)∪(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax2+2,g(x)=x3+bx,其中a,b都是常数.
(Ⅰ)若曲线y=f(x)和曲线y=g(x)在它们交点(1,c)处具有公切线,求a,b的值;
(Ⅱ)当a2=4b时,求函数f(x)-g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=\frac{1}{2}{x^2}-(a+\frac{1}{a})x+lnx$,其中a>0.
(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处切线的方程;
(Ⅱ)当a≠1时,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数 $f(x)=\frac{1}{3}{x^3}-{x^2}$.求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,角A、B、C的对边分别是a、b、c.若$A=\frac{π}{4},B-C=\frac{π}{2},a=\sqrt{2}$,则△ABC的面积为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若m,n是互不相同的直线,α,β是不重合的平面,则下列命题正确的是(  )
A.α∥β,m?α,n?β⇒m∥n?B.α⊥β,m⊥α,n⊥β⇒m⊥n
C.α⊥β,m∥α,n∥β⇒m⊥nD.α∥β,m∥α,n∥β⇒m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图是正三棱锥V-ABC的正视图、侧视图和俯视图,则其侧视图的面积是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x+$\frac{a}{x}$-(a-1)lnx.
(1)讨论f(x)在[1,e]上得单调性;
(2)已知g(x)=f(x)-x在[1,e]上单调递减,讨论f(x)在[1,e]上零点的个数.

查看答案和解析>>

同步练习册答案