精英家教网 > 高中数学 > 题目详情
13.设偶函数f(x)的导函数是f′(x)且f(e)=0,当x>0时,有[f′(x)-f(x)]ex>0成立,则使得f(x)>0的x的取值范围是(  )
A.(-e,e)B.(-∞,-e)∪(e,+∞)C.(-∞,-e)∪(0,e)D.(-e,0)∪(e,+∞)

分析 分别求出f(x)在(-∞,0),(0,+∞)的单调性,求出不等式f(x)>0的解集即可.

解答 解:∵x>0时,有[f′(x)-f(x)]ex>0,
∴x>0时,f(x)递增,
而函数f(x)的偶函数,
∴x<0时,f(x)递减,
又f(e)=0,故f(-e)=f(e)=0,
∴x>0时,f(x)>0=f(e),故x>e,
x<0时,f(x)>f(e),故x<-e,
故选:B.

点评 本题考查了函数的单调性问题,考查函数的奇偶性问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.在Rt△ABC中,已知AC=4,BC=1,P是斜边AB上的动点(除端点外),设P到两直角边的距离分别为d1,d2,则$\frac{1}{d_1}+\frac{1}{d_2}$的最小值为(  )
A.$\frac{5}{4}$B.$\frac{3}{2}$C.$\frac{9}{4}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$f(x)=\left\{\begin{array}{l}sinx,x≤1\\ \frac{1}{x},x>1\end{array}\right.$,则$\int_{-1}^e{f(x)dx=}$(  )
A.0B.1C.1+2cos1D.1-2cos1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.把能够将圆O:x2+y2=9的周长和面积同时分为相等的两部分的函数称为圆O的“圆梦函数”,则下列函数不是圆O的“圆梦函数”的是(  )
A.f(x)=x3B.$f(x)=tan\frac{x}{2}$C.f(x)=ln[(4-x)(4+x)]D.f(x)=(ex+e-x)x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数$f(x)=\frac{1}{3}{x^3}+a{x^2}+5x+6$在区间[1,3]上单调递减,则实数a的取值范围是(-∞,-3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.对于R上可导的任意函数f(x),若满足(x-1)f′(x)≤0,则必有(  )
A.f(-3)+f(3)<2f(1)B.f(-3)+f(7)>2f(1)C.f(-3)+f(3)≤2f(1)D.f(-3)+f(7)≥2f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2-ax-1+lnx(x>0).
(Ⅰ)当a=3时,求f(x)的单调递增区间;
(Ⅱ)若f(x)在$(0,\frac{1}{2})$上是增函数,求a的取值范围;
(Ⅲ)是否存在实数a>1,使得方程f(x)=x2-1在区间(1,e)上有解,若存在,试求出a的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=$\frac{1}{x}$,g(x)=f(x)+af′(x).
(1)若a<0,试判断g(x)在定义域内的单调性;
(2)若g(x)在[1,e]上的最小值为$\frac{3}{2}$,求a的值;
(3)证明:当a≥1时,g(x)>ln(x+1)在(0,+∞)上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}:$\frac{1}{1}$,$\frac{1}{1+2}$,$\frac{1}{1+2+3}$,…$\frac{1}{1+2+3+…n}$,…,求它的前n项和.

查看答案和解析>>

同步练习册答案