精英家教网 > 高中数学 > 题目详情
4.已知$f(x)=\left\{\begin{array}{l}sinx,x≤1\\ \frac{1}{x},x>1\end{array}\right.$,则$\int_{-1}^e{f(x)dx=}$(  )
A.0B.1C.1+2cos1D.1-2cos1

分析 根据分段函数,则$\int_{-1}^e{f(x)dx=}$${∫}_{-1}^{1}$sinxdx+${∫}_{1}^{e}$$\frac{1}{x}$dx,根据定积分的计算法则计算即可.

解答 解:$f(x)=\left\{\begin{array}{l}sinx,x≤1\\ \frac{1}{x},x>1\end{array}\right.$,则$\int_{-1}^e{f(x)dx=}$${∫}_{-1}^{1}$sinxdx+${∫}_{1}^{e}$$\frac{1}{x}$dx=-cosx|${\;}_{-1}^{1}$+lnx|${\;}_{1}^{e}$=-(cos1-cos(-1))+lne-ln1=1,
故选:B.

点评 本题考查了分段函数和定积分的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.化简3($\overrightarrow{a}$-2$\overrightarrow{b}$)+$\frac{3}{2}$(6$\overrightarrow{a}$+2$\overrightarrow{b}$)=12$\overrightarrow{a}$-3$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.(x2+1)(ax+1)5的展开式中各项系数的和为486,则该展开式中x2项的系数为41.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.现有一根九节的竹子,自上而下各节的容积成等差数列,上面3节的容积共1升,最下面3节的容积共2升,第5节的容积是(  )升.
A.0.2B.0.5C.0.75D.1.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,已知角C=$\frac{π}{3}$,边AC=4,且△ABC的面积为2$\sqrt{3}$,则边AB=2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a=1.70.3,b=0.93.1,c=0.91.7,则a,b,c的大小关系是(  )
A.a<b<cB.b<a<cC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx-ax(a∈R).
(1)当a=2时,求函数f(x)的单调区间;
(2)当a>0时,求函数f(x)在[1,e]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设偶函数f(x)的导函数是f′(x)且f(e)=0,当x>0时,有[f′(x)-f(x)]ex>0成立,则使得f(x)>0的x的取值范围是(  )
A.(-e,e)B.(-∞,-e)∪(e,+∞)C.(-∞,-e)∪(0,e)D.(-e,0)∪(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax2+2,g(x)=x3+bx,其中a,b都是常数.
(Ⅰ)若曲线y=f(x)和曲线y=g(x)在它们交点(1,c)处具有公切线,求a,b的值;
(Ⅱ)当a2=4b时,求函数f(x)-g(x)的单调区间.

查看答案和解析>>

同步练习册答案