精英家教网 > 高中数学 > 题目详情
12.现有一根九节的竹子,自上而下各节的容积成等差数列,上面3节的容积共1升,最下面3节的容积共2升,第5节的容积是(  )升.
A.0.2B.0.5C.0.75D.1.5

分析 设自上而下各节的容积成等差数列{an},由题意可得:a1+a2+a3=1,a7+a8+a9=2,相加利用等差数列的通项公式的性质即可得出.

解答 解:设自上而下各节的容积成等差数列{an},
由题意可得:a1+a2+a3=1,a7+a8+a9=2,
相加可得:a1+a2+a3+a7+a8+a9=6a5=3,
解得a5=$\frac{1}{2}$.
故选:B.

点评 本题考查了等差数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设一元二次方程mx2+(2m-1)x+(m+1)=0的两根为tanα,tanβ,求tan(α+β)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在Rt△ABC中,已知AC=4,BC=1,P是斜边AB上的动点(除端点外),设P到两直角边的距离分别为d1,d2,则$\frac{1}{d_1}+\frac{1}{d_2}$的最小值为(  )
A.$\frac{5}{4}$B.$\frac{3}{2}$C.$\frac{9}{4}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.以下结论:
①函数y=sin(kπ-x),(k∈Z)为奇函数;
②函数$y=tan({2x+\frac{π}{6}})$的图象关于点$({\frac{π}{12},0})$对称;
③函数$y=cos({2x+\frac{π}{3}})$的图象的一条对称轴为$x=-\frac{2}{3}π$;
④函数$y=2sin(x-\frac{π}{3}),x∈[{0,2π}]$的单调递减区间是$[{\frac{5π}{6},\frac{11π}{6}}]$;
⑤存在实数x,使sinx+cosx=2;
其中正确结论的序号为①,③,④.(多选、少选、选错均不得分).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.C${\;}_{33}^{1}$+C${\;}_{33}^{2}$+C${\;}_{33}^{3}$+…+C${\;}_{33}^{33}$除以9的余数是7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若{an}为等差数列,Sn是其前n项的和,且${S_{11}}=\frac{22}{3}π,\{{b_n}\}$为等比数列,且bn>0,${b_5}•{b_7}=\frac{π^2}{4}$,则tan(a6+b6)的值为(  )
A.$\sqrt{3}$B.$±\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.±$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$f(x)=\left\{\begin{array}{l}sinx,x≤1\\ \frac{1}{x},x>1\end{array}\right.$,则$\int_{-1}^e{f(x)dx=}$(  )
A.0B.1C.1+2cos1D.1-2cos1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.把能够将圆O:x2+y2=9的周长和面积同时分为相等的两部分的函数称为圆O的“圆梦函数”,则下列函数不是圆O的“圆梦函数”的是(  )
A.f(x)=x3B.$f(x)=tan\frac{x}{2}$C.f(x)=ln[(4-x)(4+x)]D.f(x)=(ex+e-x)x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=$\frac{1}{x}$,g(x)=f(x)+af′(x).
(1)若a<0,试判断g(x)在定义域内的单调性;
(2)若g(x)在[1,e]上的最小值为$\frac{3}{2}$,求a的值;
(3)证明:当a≥1时,g(x)>ln(x+1)在(0,+∞)上恒成立.

查看答案和解析>>

同步练习册答案