精英家教网 > 高中数学 > 题目详情
11.已知函数$f(x)=\frac{1}{2}{x^2}-(a+\frac{1}{a})x+lnx$,其中a>0.
(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处切线的方程;
(Ⅱ)当a≠1时,求函数f(x)的单调区间.

分析 (Ⅰ)把a=2代入函数解析式,求出原函数的导函数,得到曲线y=f(x)在点(1,f(1))处的导数值,再求出f(1),代入直线方程的点斜式求切线的方程;
(Ⅱ)求函数f(x)的导函数,得到导函数的零点,根据a的范围由导函数的零点对函数定义域分段,利用导函数在各区间段内的符号判断原函数的单调性;

解答 解:(Ⅰ)解:当a=2时,f(x)=$\frac{1}{2}$x2-$\frac{5}{2}$x+lnx,f′(x)=x-$\frac{5}{2}$+$\frac{1}{x}$,
∴f′(1)=-$\frac{1}{2}$,f(1)=-2.
∴切线方程为:y+2=-$\frac{1}{2}$(x-1),整理得:x+2y+3=0;
(Ⅱ)f′(x)x-(a+$\frac{1}{a}$)+$\frac{1}{x}$=$\frac{(x-a)(x-\frac{1}{a})}{x}$(x>0),
令f′(x)=0,解得:x=a或x=$\frac{1}{a}$,
①若0<a<1,a<$\frac{1}{a}$,当x变化时,f′(x),f(x)的变化情况如表:

 x (0,a) a (a,$\frac{1}{a}$)$\frac{1}{a}$  ($\frac{1}{a}$,+∞)
 f′(x)+ 0- 0+
 f(x) 增函数 极大值 减函数 极小值 增函数
∴f(x)在区间(0,a)和($\frac{1}{a}$,+∞)内是增函数,在(a,$\frac{1}{a}$,)内是减函数;
②若a>1,a>$\frac{1}{a}$,当x变化时,f′(x),f(x)的变化情况如表:
 (0,$\frac{1}{a}$)$\frac{1}{a}$($\frac{1}{a}$,a) (a,+∞) 
 f′(x)+-+
 f(x) 增函数 极大值减函数  极小值 增函数
∴f(x)在区间(0,$\frac{1}{a}$)和(a,+∞)内是增函数,在($\frac{1}{a}$,+∞)内是减函数.

点评 本题考查利用导数研究过曲线上某点处的切线方程,考查了利用导数研究函数的单调性,考查数学转化思想方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.把能够将圆O:x2+y2=9的周长和面积同时分为相等的两部分的函数称为圆O的“圆梦函数”,则下列函数不是圆O的“圆梦函数”的是(  )
A.f(x)=x3B.$f(x)=tan\frac{x}{2}$C.f(x)=ln[(4-x)(4+x)]D.f(x)=(ex+e-x)x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=$\frac{1}{x}$,g(x)=f(x)+af′(x).
(1)若a<0,试判断g(x)在定义域内的单调性;
(2)若g(x)在[1,e]上的最小值为$\frac{3}{2}$,求a的值;
(3)证明:当a≥1时,g(x)>ln(x+1)在(0,+∞)上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知可导函数f(x)(x∈R)的导函数f′(x)满足f′(x)>f(x),则当a≥0时,f(a)和eaf(0)(e是自然对数的底数)大小关系为(  )
A.f(a)≥eaf(0)B.f(a)>eaf(0)C.f(a)≤eaf(0)D.f(a)<eaf(0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数$f(x)=\frac{lnx}{x}$
(1)求f(x)的单调区间与极值;
(2)比较1.712.71与2.711.71的大小,并说明理由
(3)证明当x∈(0,2)时,$f({x+1})<\frac{9x}{{{x^2}+7x+6}}+\frac{1}{x+1}-\frac{1}{{\sqrt{x+1}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)的导函数图象如图所示,若△ABC为钝角三角形,且∠C为钝角,则一定成立的是(  )
A.f(cosA)<f(cosB)B.f(sinA)<f(cosB)C.f(sinA)>f(cosB)D.f(sinA)>f(sinB)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}:$\frac{1}{1}$,$\frac{1}{1+2}$,$\frac{1}{1+2+3}$,…$\frac{1}{1+2+3+…n}$,…,求它的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=eax(其中e=2.71828…),$g(x)=\frac{f(x)}{x}$.
(1)若g(x)在[1,+∞)上是增函数,求实数a的取值范围;
(2)当$a=\frac{1}{2}$时,求函数g(x)在[m,m+1](m>0)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2sin(ωx)cos(ωx)+msin2(ωx)(ω>0)关于点($\frac{π}{12},1$)对称
(Ⅰ)求m的值及f(x)的最小值;
(Ⅱ)在△ABC中,角A,B,C所对应的边分别为a,b,c,最大内角A的值为f(x)的最小正周期,若b=2,△ABC面积的取值范围为[$\frac{\sqrt{3}}{2},\sqrt{3}$],求角A的值及a的取值范围.

查看答案和解析>>

同步练习册答案