精英家教网 > 高中数学 > 题目详情
10.如图,在正四面体ABCD(正四面体是所有棱长都相等的四面体)中,棱长为2,E、F分别为BC、AD的中点.
(Ⅰ)求$\overrightarrow{AE}•\overrightarrow{CF}$的值;
(Ⅱ)求二面角A-BC-D的余弦值.

分析 (Ⅰ)求出$\overrightarrow{AE}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$,$\overrightarrow{CF}=\overrightarrow{CA}+\frac{1}{2}\overrightarrow{AD}$,由此能求出结果.
(Ⅱ)连接DE,则∠AED为二面角A-BC-D的平面角,由此能求出二面角A-BC-D的余弦值.

解答 解:(Ⅰ)∵在正四面体ABCD(正四面体是所有棱长都相等的四面体)中,
棱长为2,E、F分别为BC、AD的中点,
∴$\overrightarrow{AE}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$,
$\overrightarrow{CF}=\overrightarrow{CA}+\frac{1}{2}\overrightarrow{AD}$,
∴$\overrightarrow{AE}•\overrightarrow{CF}$=($\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$)•($\overrightarrow{CA}+\frac{1}{2}\overrightarrow{AD}$)
=$\frac{1}{2}\overrightarrow{AB}•\overrightarrow{CA}$+$\frac{1}{2}\overrightarrow{AC}•\overrightarrow{CA}$+$\frac{1}{4}\overrightarrow{AB}•\overrightarrow{AD}$+$\frac{1}{4}\overrightarrow{AC}•\overrightarrow{AD}$
=$\frac{1}{2}×|\overrightarrow{AB}|•|\overrightarrow{CA}|×cos120°$-$\frac{1}{2}×|\overrightarrow{AC}{|}^{2}$+$\frac{1}{4}×|\overrightarrow{AB}|•|\overrightarrow{AD}|×cos60°$+$\frac{1}{4}×|\overrightarrow{AC}|•|\overrightarrow{AD}|×cos60°$
=$\frac{1}{2}×2×2×(-\frac{1}{2})-\frac{1}{2}×{2}^{2}+\frac{1}{4}×2×2×\frac{1}{2}$+$\frac{1}{4}×2×2×\frac{1}{2}$=-2,
∴$\overrightarrow{AE}•\overrightarrow{CF}=-2$.
(Ⅱ)连接DE,则∠AED为二面角A-BC-D的平面角,
∵AB=AC=2,
∴$AE=\sqrt{3},DE=\sqrt{3},AD=2$,
∴$cos∠AED=\frac{1}{3}$,
∴二面角A-BC-D的余弦值为$\frac{1}{3}$.

点评 本题考查向量的数量积的求法,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.函数f(x)=$\frac{{a•{2^x}+b}}{{{2^x}+1}}$是R上的奇函数,且f(1)=$\frac{1}{3}$,
(1)求a,b的值;
(2)判断函数f(x)的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知正数a,b满足ab=2a+b+2.
(Ⅰ)求ab的最小值;
(Ⅱ)求a+2b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=sinx•cos(x-$\frac{π}{6}$)+cos2x-$\frac{1}{2}$.
(1)求函数f(x)的最大值,并写出f(x)取最大值x时的取值集合;
(2)若f(x0)=$\frac{11}{20}$,x0∈[$\frac{π}{6}$,$\frac{π}{2}$],求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数$f(x)=\left\{\begin{array}{l}x-5,({x≥6})\\ f({x+2}),({x<6})\end{array}\right.$,则f(2)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角A、B、C的对边分别是a、b、c,且a2=b2+c2+$\sqrt{3}$bc.求A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=m•3x-x+3(m<0)在区间(0,1)上有零点,则m的取值范围为$-3<m<-\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆mx2+5y2=5m(m>0)的离心率为$e=\frac{{\sqrt{10}}}{5}$,求m的值,并求椭圆的长轴和短轴的长、焦点坐标、顶点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数既是奇函数,又在区间[-1,1]上单调递减的是(  )
A.f(x)=sinxB.f(x)=-|x+1|
C.$f(x)=ln\frac{2-x}{2+x}$D.f(x)=$\frac{1}{2}$(ax+a-x),(a>0,a≠1)

查看答案和解析>>

同步练习册答案