精英家教网 > 高中数学 > 题目详情
18.函数f(x)=$\frac{{a•{2^x}+b}}{{{2^x}+1}}$是R上的奇函数,且f(1)=$\frac{1}{3}$,
(1)求a,b的值;
(2)判断函数f(x)的单调性并证明.

分析 (1)利用函数是奇函数,函数值列出方程,即可求出a,b.
(2)直接利用函数的单调性的定义证明即可.

解答 解:(1)∵f(x)为R上奇函数,∴f(0)=0,
即a=-b①
∵$f(1)=\frac{2a+b}{3}=\frac{1}{3}$,
∴2a+b=1,②
结合①②有   a=1,b=-1…(6分)
(2)由(1)得$f(x)=\frac{{{2^x}-1}}{{{2^x}+1}}=1-\frac{2}{{{2^x}+1}}$,
设x1<x2则${2^{x_1}}<{2^{x_2}},f({x_1})-f({x_2})=\frac{2}{{{2^{x_2}}+1}}-\frac{2}{{{2^{x_1}}+1}}=\frac{{2({2^{x_1}}-{2^{x_2}})}}{{({2^{x_2}}+1)({2^{x_1}}+1)}}<0$,
即f(x1)<f(x2),
∴f(x)为单调递增函数.   …(12分)

点评 本题考查函数的奇偶性以及单调性的判断与应用,考查函数与方程的思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.下列函数中,既是奇函数又是减函数的是(  )
A.y=x${\;}^{\frac{1}{3}}$B.y=log${\;}_{\frac{1}{3}}$|x|C.y=x+$\frac{2}{x}$D.y=2-x-2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知全集U=A∪B={x是自然数|0≤x≤10},A∩(∁UB)={1,3,5,7},A∩B⊆{2,4},求集合A和B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.x,y为实数,使x>y且$\frac{1}{x}$>$\frac{1}{y}$同时成立的一个充要条件是xy<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=[x]的函数值表示不超过x的最大整数,例如[-3.5]=-4,[2.1]=2,则f(x)-x=0的解有(  )
A.1B.2C.3D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.碘-131经常被用于对甲状腺的研究,它的半衰期大约是8天(即经过8天的时间,有一半的碘-131会衰变为其他元素).今年10月1日凌晨,在一容器中放入一定量的碘-131,到10月25日凌晨,测得该容器内还剩有2毫克的碘-131,则10月1日凌晨,放人该容器的碘-131的含量是(  )
A.8毫克B.16毫克C.32毫克D.64毫克

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)的定义域为(-1,1),对任意x,y∈(-1,1),有f(x)+f(y)=f(${\frac{x+y}{1+xy}}$).
(1)验证函数f(x)=lg($\frac{1-x}{1+x}$)是否满足这些条件;
(2)判断函数f(x)的奇偶性并证明;
(3)若f($\frac{a+b}{1+ab}$)=1,f($\frac{a-b}{1-ab}$)=2,且|a|<1,|b|<1,求f(a),f(b)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{a}$=(1,t),$\overrightarrow{b}$=(-2,1)满足(2$\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则t=$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在正四面体ABCD(正四面体是所有棱长都相等的四面体)中,棱长为2,E、F分别为BC、AD的中点.
(Ⅰ)求$\overrightarrow{AE}•\overrightarrow{CF}$的值;
(Ⅱ)求二面角A-BC-D的余弦值.

查看答案和解析>>

同步练习册答案