精英家教网 > 高中数学 > 题目详情
用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开的式子是
 
考点:数学归纳法
专题:证明题,点列、递归数列与数学归纳法
分析:本题考查的数学归纳法的步骤,根据归纳假设,只需展开 (k+3)3
解答: 解:n=k+1时,证明“(k+1)3+(k+2)3+(k+3)3能被9整除”,根据归纳假设,n=k时,证明“k3+(k+1)3+(k+2)3能被9整除”,
所以只需展开(k+3)3
故答案为:(k+3)3
点评:数学归纳法常常用来证明一个与自然数集N相关的性质,其步骤为:设P(n)是关于自然数n的命题,若1)(奠基) P(n)在n=1时成立;2)(归纳) 在P(k)(k为任意自然数)成立的假设下可以推出P(k+1)成立,则P(n)对一切自然数n都成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,BC=2,CA=1,∠B=30°,则∠A=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在一个边长为2的正方形OABC内,曲线y=-x2+2x与x轴围成如图所示的阴影部分,向正方形OABC内随机投一点(该点落在正方形OABC内的任意一点是等可能的),则点落在阴影部分内的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[-1,5],部分对应值如图:
x -1 0 4 5
f(x) 1 2 2 1
f(x)的导函数y=f′(x)的图象如图所示,下列关于f(x)的命题:
①函数f(x)是周期函数; 
②函数f(x)在[0,2]是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最小值为0;
④函数y=f(x)-a的零点个数可能为0、1、2、3、4个.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=x-4与f(x)=loga(-x)和g(x)=a-x(a>1)的图象分别交于A(x1,y1),B(x2,y2),则x1+x2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

存在x∈R,使|3x+1|≤|2x|+a成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为了得到函数y=sin(2x-
π
6
)的图象,可以将函数y=sin2x的图象(  )
A、向右平移
π
6
个单位
B、向右平移
π
12
个单位
C、向左平移
π
6
个单位
D、向左平移
π
12
个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z1=a-i,z2=1-2i,若
z1
z2
是纯虚数,则实数a的值为(  )
A、
1
2
B、-
1
2
C、2
D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

根据图所示的算法流程图,输出的结果T为(  )
A、8B、48C、49D、50

查看答案和解析>>

同步练习册答案