精英家教网 > 高中数学 > 题目详情
19.如图,一个几何体的三视图是三个直角三角形,则该几何体的最长的棱长等于(  )
A.2$\sqrt{2}$B.3C.3$\sqrt{3}$D.9

分析 由三视图知该几何体是一个三棱锥,由三视图求出几何元素的长度、判断出线面的位置关系,由图判断出几何体的最长棱,由勾股定理求出即可.

解答 解:由三视图知几何体是一个三棱锥P-ABC,
直观图如图所示:PC⊥平面ABC,PC=1,
且AB=BC=2,AB⊥BC,
∴AC=$\sqrt{A{B}^{2}+B{C}^{2}}=2\sqrt{2}$,
∴该几何体的最长的棱是PA,且PA=$\sqrt{A{C}^{2}+P{C}^{2}}$=3,
故选:B.

点评 本题考查几何体的三视图,由三视图正确复原几何体是解题的关键,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.棱长为4的正方体ABCD-A1B1C1D1的内切球的表面积为(  )
A.B.16πC.24πD.32π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设函数f(x)=log${\;}_{\frac{1}{2}}$x,给出下列四个命题:
①函数f(|x|)为偶函数;
②若f(a)=|f(b)|其中a>0,b>0,a≠b,则ab=1;
③函数f(-x2+2x)在(1,3)上为单调递增函数;
④若0<a<1,则|f(1+a)|<|f(1-a)|.
则正确命题的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{2,x>m}\\{{x}^{2}+4x+2,x≤m}\end{array}\right.$若函数g(x)=f(x)-x有三个不同的零点,则实数m的取值范围是[-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某几何体的三视图如图所示,且该几何体的体积为$\frac{2\sqrt{3}}{3}$,则正视图中x的值为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某几何图形的三视图和尺寸的标示如图所示,该几何图形的体积或面积分别是(  )
A.$\frac{1}{6}$a3,$\frac{{\sqrt{3}}}{2}$a2B.$\frac{1}{6}$a3,$\frac{{({3+\sqrt{3}}){a^2}}}{2}$C.$\frac{{\sqrt{2}}}{12}$a3,$\frac{{\sqrt{3}}}{2}$a2D.$\frac{{\sqrt{2}}}{12}$a3,$\frac{{({3+\sqrt{3}}){a^2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=x3+3x的单调递增区间是R.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.我们可以将1拆分如下:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,以此类推,可得:1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{20}$+$\frac{1}{n}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,其中m,n∈N*,且m<n,则满足C${\;}_{t}^{m}$=C${\;}_{t}^{n}$的正整数t的值为43.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设向量$\overrightarrow{a}$与$\overrightarrow{b}$夹角为θ,定义$\overrightarrow{a}$与$\overrightarrow{b}$的“向量积”:$\overrightarrow{a}$×$\overrightarrow{b}$是一个向量,它的模|$\overrightarrow{a}$×$\overrightarrow{b}$|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|sinθ.若$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(-1,$\sqrt{3}$),则|$\overrightarrow{a}$×$\overrightarrow{b}$|=2$\sqrt{3}$.

查看答案和解析>>

同步练习册答案