精英家教网 > 高中数学 > 题目详情

【题目】某省的一个气象站观测点在连续4天里记录的指数与当天的空气水平可见度(单位: )的情况如表1:

该省某市2016年11月指数频数分布如表2:

频数

3

6

12

6

3

(1)设,根据表1的数据,求出关于的线性回归方程;

(附参考公式: ,其中

(2)小李在该市开了一家洗车店,经统计,洗车店平均每天的收入与指数由相关关系,如表3:

日均收入(元)

根据表3估计小李的洗车店该月份平均每天的收入.

【答案】(1) (2)2400元

【解析】试题分析:首先根据表格数据计算,再计算 ,求出回归直线方程;再根据表3可知,该月30天中有3天每天亏损约2000元,有6天每天亏损约1000元,有12天每天收入约2000元,有6天每天收入约6000元,有3天每天收入约8000元,计算出该月份平均每天的收入.

试题解析:

(1)

所以关于的线性回归方程为

(2)根据表3可知,该月30天中有3天每天亏损约2000元,有6天每天亏损约1000元,有12天每天收入约2000元,有6天每天收入约6000元,有3天每天收入约8000元,估计小李的洗车店该月份平均每天的收入约为元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)(x∈R)满足f(﹣x)=8﹣f(4+x),函数g(x)= ,若函数f(x)与g(x)的图象共有168个交点,记作Pi(xi , yi)(i=1,2,…,168),则(x1+y1)+(x2+y2)+…+(x168+y168)的值为(
A.2018
B.2017
C.2016
D.1008

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是(
A.[﹣5,﹣3]
B.[﹣6,﹣ ]
C.[﹣6,﹣2]
D.[﹣4,﹣3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】苏州市一木地板厂生产A、B、C三类木地板,每类木地板均有环保型和普通两种型号,某月的产量如下表(单位:片):

类型

木地板A

木地板B

木地板C

环保型

150

200

Z

普通型

250

400

600

按分层抽样的方法在这个月生产的木地板中抽取50片,其中A类木地板10片.
(1)求Z的值;
(2)用随机抽样的方法从B类环保木地板抽取8片,作为一个样本,经检测它们的得分如下:9.4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,从中任取一个数,求该数与样本平均数之差的绝对不超过0.5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】苏州市一木地板厂生产A、B、C三类木地板,每类木地板均有环保型和普通两种型号,某月的产量如下表(单位:片):

类型

木地板A

木地板B

木地板C

环保型

150

200

Z

普通型

250

400

600

按分层抽样的方法在这个月生产的木地板中抽取50片,其中A类木地板10片.
(1)求Z的值;
(2)用随机抽样的方法从B类环保木地板抽取8片,作为一个样本,经检测它们的得分如下:9.4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,从中任取一个数,求该数与样本平均数之差的绝对不超过0.5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,其离心率为.

(1)求椭圆的方程;

(2)直线相交于两点,在轴上是否存在点,使为正三角形,若存在,求直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣3x2﹣9x+2
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在区间[﹣2,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 ,对任意x∈R,不等式a(cos2x﹣m)+πcosx≥0恒成立,则实数m的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥中,底面为菱形,且是边长为的正三角形,且平面平面,已知点的中点.

(Ⅰ)证明:平面

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

同步练习册答案