精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线的参数方程为,其中为参数,.在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为.

(1)求直线的直角坐标方程与曲线的普通方程;

(2)若是曲线上的动点,为线段的中点.求点到直线的距离的最大值.

【答案】(1);(2).

【解析】

(1) 已知直线的极坐标方程,运用互化公式,即可求出直角坐标方程.将曲线的参数方程进行消去参数,即可得出曲线的普通方程.

(2) 利用曲线的参数方程表示出点坐标,再写出点的直角坐标,便得出中点坐标,利用点到直线的距离公式求出点到直线的距离的最大值.

(1)∵直线的极坐标方程为,即.

,可得直线的直角坐标方程为.

将曲线的参数方程消去参数,得曲线的普通方程为.

(2)设.

的极坐标化为直角坐标为.

.

∴点到直线的距离.

,即时,等号成立.

∴点到直线的距离的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.

非体育迷

体育迷

合计

合计

1)根据已知条件完成下面的列联表,并据此资料你是否认为“体育迷”与性别有关?

2)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.

附:参考公式:.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左、右焦点,离心率为是平面内两点,满足,线段的中点在椭圆上,周长为12.

1)求椭圆的方程;

2)若过的直线与椭圆交于,求(其中为坐标原点)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据统计,仅在北京地区每天就有500万单快递等待派送,近5万多名快递员奔跑在一线,快递网点人员流动性也较强,各快递公司需要经常招聘快递员,保证业务的正常开展.下面是50天内甲、乙两家快递公司的快递员的每天送货单数统计表:

送货单数

30

40

50

60

天数

10

10

20

10

5

15

25

5

已知这两家快递公司的快递员的日工资方案分别为:甲公司规定底薪元,每单抽成元;乙公司规定底薪元,每日前单无抽成,超过单的部分每单抽成元.

(1)分别求甲、乙快递公司的快递员的日工资(单位:元)与送货单数的函数关系式;

(2)若将频率视为概率,回答下列问题:

记甲快递公司的快递员的日工资为(单位:元),求的分布列和数学期望;

小赵拟到甲、乙两家快递公司中的一家应聘快递员的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四边形中,上的点,的中点.将沿折起到的位置,使得.

)求证:平面平面

)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量满足,则以下说法正确的有( )个.

②对于平面内任一向量,有且只有一对实数使

③若,且,则的范围为

④设,且处取得最小值,当时,则

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)若曲线与曲线在它们的交点处具有公共切线,求ab的值;

2)当时,若函数在区间内恰有两个零点,求a的取值范围;

3,求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=xlnxx+1gx)=exaxaR

(Ⅰ)求fx)的最小值;

(Ⅱ)若gx≥1R上恒成立,求a的值;

(Ⅲ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市的甲区、乙区分别对6个企业进行评估,综合得分情况如茎叶图所示.

1)根据茎叶图,分别求甲、乙两区引进企业得分的平均值;

2)规定85分以上(含85分)为优秀企业,若从甲、乙两个区准备引进的优秀企业中各随机选取一个,求这两个企业得分的差的绝对值不超过5分的概率.

查看答案和解析>>

同步练习册答案