精英家教网 > 高中数学 > 题目详情
17.已知过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,过原点O作$\overrightarrow{OM}$,使$\overrightarrow{OM}$⊥$\overrightarrow{AB}$,垂足为M,求点M的轨迹方程.

分析 由题中条件$\overrightarrow{OM}$⊥$\overrightarrow{AB}$,从而得出点M的轨迹是以OF为直径的圆,依据其圆心($\frac{1}{2}$,0),半径为$\frac{1}{2}$,写出其方程即可求得点M的轨迹方程.

解答 解:∵$\overrightarrow{OM}$⊥$\overrightarrow{AB}$,
∴∠OMF=90°,
∴点M的轨迹是以OF为直径的圆,其圆心($\frac{1}{2}$,0),半径为$\frac{1}{2}$.
其方程为:(x-$\frac{1}{2}$)2+y2=$\frac{1}{4}$.

点评 本题主要考查了圆锥曲线的轨迹问题、抛物线的标准方程与性质.考查了学生分析和解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,点P是椭圆上一点,若存在点P使得∠F1PF2为钝角,求离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设不等式2-x≥0的解集为A,集合B={x|x<a,a∈R},若B?A,则实数a的取值范围为a≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.综合应用抛物线和双曲线的光学性质,可以设计制造反射式天文望远镜,这种望远镜的特点是,镜筒可以很短而观察天体运动又很清楚.例如,某天文仪器厂设计制造的一种镜筒直径为0.6m,长为2m的反射式望远镜,其光学系统的原理如图(中心截口示意图)所示.其中,一个反射镜PO1Q弧所在的曲线为抛物线,另一个反射镜MO2N弧所在的曲线为双曲线的一个分支.已知F1,F2是双曲线的两个焦点,其中F2同时又是抛物线的焦点,试根据图示尺寸(单位:mm),分别求抛物线和双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设f(θ)=$\frac{{2cos}^{2}θ{+sin}^{2}(2π-θ)+cos(-θ)-3}{2{+2cos}^{2}(π+θ)+cos(2π-θ)}$,求f($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下面使用类比推理正确的是(  )
A.直线a∥b,b∥c,则a∥c,类推出:向量$\overrightarrow a∥\overrightarrow b,\overrightarrow b∥\overrightarrow c$,则$\overrightarrow a∥\overrightarrow c$
B.同一平面内,直线a,b,c,若a⊥c,b⊥c,则a∥b.类推出:空间中,直线a,b,c,若a⊥c,b⊥c,则a∥b
C.实数a,b,若方程x2+ax+b=0有实数根,则a2≥4b.类推出:复数a,b,若方程x2+ax+b=0有实数根,则a2≥4b
D.以点(0,0)为圆心,r为半径的圆的方程为x2+y2=r2.类推出:以点(0,0,0)为球心,r为半径的球的方程为x2+y2+z2=r2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}是等差数列,且满足等式n•2n-1=a1${C}_{n}^{1}$+a2${C}_{n}^{2}$+…+an${C}_{n}^{n}$(n∈N*),试求出这个等差数列的通项an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若2x+5y≤2-y+5-x,则有(  )
A.x+y≥0B.x+y≤0C.x-y≤0D.x-y≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知两圆C1:(x+3)2+(y-1)2=4和C2:(x-4)2+(y-5)2=4.
(1)若过点(0,1)的直线l与两圆相交所得的弦相等,求直线l的方程;
(2)若过点(-1.5,3.5)存在两条互相垂直的直线l和m,它们分别与两圆相交所得的弦相等,求直线l和m的方程.

查看答案和解析>>

同步练习册答案