精英家教网 > 高中数学 > 题目详情
12.设函数f(x)=|x-1|-|2x+1|的最大值为m.
(1)作出函数f(x)的图象;
(2)若a2+2c2+3b2=m,求ab+2bc的最大值.

分析 (1)分类讨论,作出函数f(x)的图象;
(2)求出函数的值域,即可求m的值,利用基本不等式求ab+2bc的最大值.

解答 解:(1)当x≤-$\frac{1}{2}$时,f(x)=(1-x)+2x+1=x+2;
当-$\frac{1}{2}$<x<1时,f(x)=(1-x)-2x-1=-3x:
当x≥1时,f(x)=(x-1)-2x-1=-x-2,
函数f(x)的图象,如图所示

(2)由题意,当x=-$\frac{1}{2}$时,f(x)取得最大值m=1.5,∴a2+2c2+3b2=1.5,
∴ab+2bc≤$\frac{1}{2}$(a2+2c2+3b2)=$\frac{3}{4}$,即ab+2bc的最大值为$\frac{3}{4}$.

点评 本题考查绝对值不等式,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.(x-1)7的展开式中x2的系数为-21.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.三棱锥V-ABC的三条棱VA,VB,VC两两垂直,三个侧面与底面所成的二面角大小分别为α,β,γ.求证:$cosαcosβcosγ({\frac{1}{{{{cos}^2}α}}+\frac{1}{{{{cos}^2}β}}+\frac{1}{{{{cos}^2}γ}}})≥\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图所示,在棱长为a的正方体ABCD-A1B2C3D4中,点E,F分别在棱AD,BC上,且AE=BF=$\frac{1}{3}$a.过EF的平面绕EF旋转,与DD1、CC1的延长线分别交于G,H点,与A1D1、B1C1分别交于E1,F1点.当异面直线FF1与DD1所成的角的正切值为$\frac{1}{3}$时,|GF1|=(  )
A.$\frac{\sqrt{19}a}{3}$B.$\frac{\sqrt{19}a}{9}$C.$\frac{\sqrt{2}a}{3}$D.$\frac{\sqrt{2}a}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.不等式|x+1|-|x-2|>1的解集为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点与抛物线${y^2}=8\sqrt{2}x$的焦点相同,F1,F2为椭圆的左、右焦点.M为椭圆上任意一点,△MF1F2面积的最大值为4$\sqrt{2}$.
(1)求椭圆C的方程;
(2)设椭圆C上的任意一点N(x0,y0),从原点O向圆N:(x-x02+(y-y02=3作两条切线,分别交椭圆于A,B两点.试探究|OA|2+|OB|2是否为定值,若是,求出其值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知焦距为2$\sqrt{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点为A,直线y=$\frac{4}{3}$与椭圆C交于P、Q两点(P在Q的左边),Q在x轴上的射影为B,且四边形ABPQ是平行四边形.
(1)求椭圆C的方程;
(2)斜率为k的直线l与椭圆C交于两个不同的点M,N.
(i)若直线l过原点且与坐标轴不重合,E是直线3x+3y-2=0上一点,且△EMN是以E为直角顶点的等腰直角三角形,求k的值
(ii)若M是椭圆的左顶点,D是直线MN上一点,且DA⊥AM,点G是x轴上异于点M的点,且以DN为直径的圆恒过直线AN和DG的交点,求证:点G是定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,ABCD是块矩形硬纸板,其中AB=2AD,$AD=\sqrt{2}$,E为DC的中点,将它沿AE折成直二面角D-AE-B.
(1)求证:AD⊥平面BDE;
(2)求二面角B-AD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,正方体ABCD-A1B1C1D1的棱长为1,点M∈AB1,N∈BC1,且AM=BN≠$\sqrt{2}$,有以下四个结论:①AA1⊥MN;②AB∥MN;③MN∥平面A1B1C1D1;④MN与A1C1一定是异面直线.其中正确命题的序号是(  )
A.①③B.②③C.①④D.①③④

查看答案和解析>>

同步练习册答案