4£®ÒÑÖª½¹¾àΪ2$\sqrt{2}$µÄÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÓÒ¶¥µãΪA£¬Ö±Ïßy=$\frac{4}{3}$ÓëÍÖÔ²C½»ÓÚP¡¢QÁ½µã£¨PÔÚQµÄ×ó±ß£©£¬QÔÚxÖáÉϵÄÉäӰΪB£¬ÇÒËıßÐÎABPQÊÇÆ½ÐÐËıßÐΣ®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Ð±ÂÊΪkµÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚÁ½¸ö²»Í¬µÄµãM£¬N£®
£¨i£©ÈôÖ±Ïßl¹ýÔ­µãÇÒÓë×ø±êÖá²»ÖØºÏ£¬EÊÇÖ±Ïß3x+3y-2=0ÉÏÒ»µã£¬ÇÒ¡÷EMNÊÇÒÔEΪֱ½Ç¶¥µãµÄµÈÑüÖ±½ÇÈý½ÇÐΣ¬ÇókµÄÖµ
£¨ii£©ÈôMÊÇÍÖÔ²µÄ×󶥵㣬DÊÇÖ±ÏßMNÉÏÒ»µã£¬ÇÒDA¡ÍAM£¬µãGÊÇxÖáÉÏÒìÓÚµãMµÄµã£¬ÇÒÒÔDNΪֱ¾¶µÄÔ²ºã¹ýÖ±ÏßANºÍDGµÄ½»µã£¬ÇóÖ¤£ºµãGÊǶ¨µã£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃc=$\sqrt{2}$£¬Ö±Ïßy=$\frac{4}{3}$´úÈëÍÖÔ²·½³Ì£¬ÇóµÃP£¬QµÄºá×ø±ê£¬¿ÉµÃ|AB|£¬ÓÉËıßÐÎABPQÊÇÆ½ÐÐËıßÐΣ¬
¿ÉµÃ|AB|=|PQ|£¬½â·½³Ì¿ÉµÃb£¬ÓÉa£¬b£¬cµÄ¹ØÏµ¿ÉµÃa£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©£¨i£©ÓÉÖ±Ïßy=kx´úÈëÍÖÔ²·½³Ì£¬ÇóµÃMµÄ×ø±ê£¬ÓÉ¡÷EMNÊÇÒÔEΪֱ½Ç¶¥µãµÄµÈÑüÖ±½ÇÈý½ÇÐΣ¬¿ÉÉèE£¨m£¬$\frac{2}{3}$-m£©£¬Çó³öEµ½Ö±Ïßkx-y=0µÄ¾àÀëd£¬ÓÉÌâÒâ¿ÉµÃOE¡ÍMN£¬|OM|=d£¬½â·½³Ì¿ÉµÃkµÄÖµ£»
£¨ii£©ÓÉM£¨-2£¬0£©£¬¿ÉµÃÖ±ÏßMNµÄ·½³ÌΪy=k£¨x+2£©£¬´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃxµÄ·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬¿ÉµÃNµÄ×ø±ê£¬ÉèG£¨t£¬0£©£¬£¨t¡Ù-2£©£¬ÓÉÌâÒâ¿ÉµÃD£¨2£¬4k£©£¬A£¨2£¬0£©£¬ÒÔDNΪֱ¾¶µÄÔ²ºã¹ýÖ±ÏßANºÍDGµÄ½»µã£¬¿ÉµÃAN¡ÍDG£¬ÔËÓÃÁ½Ö±Ïß´¹Ö±µÄÌõ¼þ£¬¿ÉµÃбÂÊÖ®»ýΪ-1£¬½â·½³Ì¿ÉµÃt=0£¬¼´¿ÉµÃµ½¶¨µã£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ2c=2$\sqrt{2}$£¬¼´c=$\sqrt{2}$£¬
Ö±Ïßy=$\frac{4}{3}$´úÈëÍÖÔ²·½³Ì¿ÉµÃ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{16}{9{b}^{2}}$=1£¬
½âµÃx=¡Àa$\sqrt{1-\frac{16}{9{b}^{2}}}$£¬
¿ÉµÃ|AB|=a-a$\sqrt{1-\frac{16}{9{b}^{2}}}$£¬
ÓÉËıßÐÎABPQÊÇÆ½ÐÐËıßÐΣ¬
¿ÉµÃ|AB|=|PQ|=2a$\sqrt{1-\frac{16}{9{b}^{2}}}$£¬
½âµÃb=$\sqrt{2}$£¬a=$\sqrt{{b}^{2}+{c}^{2}}$=2£¬
¿ÉµÃÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1£»
£¨2£©£¨i£©ÓÉÖ±Ïßy=kx´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃ£¨1+2k2£©x2=4£¬
½âµÃx=¡À$\frac{2}{\sqrt{1+2{k}^{2}}}$£¬
¿ÉÉèM£¨$\frac{2}{\sqrt{1+2{k}^{2}}}$£¬$\frac{2k}{\sqrt{1+2{k}^{2}}}$£©£¬
ÓÉ¡÷EMNÊÇÒÔEΪֱ½Ç¶¥µãµÄµÈÑüÖ±½ÇÈý½ÇÐΣ¬
¿ÉÉèE£¨m£¬$\frac{2}{3}$-m£©£¬Eµ½Ö±Ïßkx-y=0µÄ¾àÀëΪd=$\frac{|km+m-\frac{2}{3}|}{\sqrt{1+{k}^{2}}}$£¬
¼´ÓÐOE¡ÍMN£¬|OM|=d£¬
¼´Îª$\frac{\frac{2}{3}-m}{m}$=-$\frac{1}{k}$£¬$\sqrt{\frac{4+4{k}^{2}}{1+2{k}^{2}}}$=$\frac{|km+m-\frac{2}{3}|}{\sqrt{1+{k}^{2}}}$£¬
ÓÉm=$\frac{2k}{3£¨k-1£©}$£¬´úÈëµÚ¶þʽ£¬»¯¼òÕûÀí¿ÉµÃ7k2-18k+8=0£¬
½âµÃk=2»ò$\frac{4}{7}$£»
£¨ii£©Ö¤Ã÷£ºÓÉM£¨-2£¬0£©£¬¿ÉµÃÖ±ÏßMNµÄ·½³ÌΪy=k£¨x+2£©£¬
´úÈëÍÖÔ²·½³Ì¿ÉµÃ£¬£¨1+2k2£©x2+8k2x+8k2-4=0£¬
¿ÉµÃ-2+xN=-$\frac{8{k}^{2}}{1+2{k}^{2}}$£¬
½âµÃxN=$\frac{2-4{k}^{2}}{1+2{k}^{2}}$£¬
yN=k£¨xN+2£©=$\frac{4k}{1+2{k}^{2}}$£¬¼´N£¨$\frac{2-4{k}^{2}}{1+2{k}^{2}}$£¬$\frac{4k}{1+2{k}^{2}}$£©£¬
ÉèG£¨t£¬0£©£¬£¨t¡Ù-2£©£¬ÓÉÌâÒâ¿ÉµÃD£¨2£¬4k£©£¬A£¨2£¬0£©£¬
ÒÔDNΪֱ¾¶µÄÔ²ºã¹ýÖ±ÏßANºÍDGµÄ½»µã£¬
¿ÉµÃAN¡ÍDG£¬
¼´ÓÐkAN•kDG=-1£¬
¼´Îª$\frac{4k}{2-4{k}^{2}-2-4{k}^{2}}$•$\frac{4k}{2-t}$=-1£¬
½âµÃt=0£®
¹ÊµãGÊǶ¨µã£¬¼´ÎªÔ­µã£¨0£¬0£©£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÍÖÔ²µÄÐÔÖÊºÍÆ½ÐÐËıßÐεÄÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬×¢ÒâÁªÁ¢·½³Ì×飬½â·½³Ì»òÔËÓÃΤ´ï¶¨Àí£¬¿¼²éÖ±¾¶Ëù¶ÔÔ²ÖܽÇΪֱ½Ç£¬Á½Ö±Ïß´¹Ö±µÄÌõ¼þ£ºÐ±ÂÊÖ®»ýΪ-1£¬Í¬Ê±¿¼²éµãµ½Ö±ÏߵľàÀ빫ʽ£¬ÒÔ¼°»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬×ÛºÏÐÔÇ¿£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Éè{an}Êǹ«²î²»Îª0µÄµÈ²îÊýÁУ¬a1=2ÇÒa1£¬a3£¬a6³ÉµÈ±ÈÊýÁУ¬Ôò{an}µÄǰ10ÏîºÍS10=$\frac{85}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=x2+ax+b£¨a£¬b¡ÊR£©ÔÚÇø¼ä£¨0£¬1£©ÄÚÓÐÁ½¸öÁãµã£¬ÊÇ3a+bµÄȡֵ·¶Î§ÊÇ£¨-5£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®É躯Êýf£¨x£©=|x-1|-|2x+1|µÄ×î´óֵΪm£®
£¨1£©×÷³öº¯Êýf£¨x£©µÄͼÏó£»
£¨2£©Èôa2+2c2+3b2=m£¬Çóab+2bcµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑ֪ij¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®$\frac{2}{3}$B£®$\frac{4}{3}$C£®2D£®$\frac{8}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªÊýÁÐ{an}Âú×ã${a_1}=1£¬|{{a_n}-{a_{n-1}}}|=\frac{1}{2^n}£¨{n¡Ý2£¬n¡ÊN}£©$£¬ÇÒ{a2n-1}ÊǵݼõÊýÁУ¬{a2n}ÊǵÝÔöÊýÁУ¬Ôò5-6a10=$\frac{1}{512}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{|x+1|+|x-3|-m}$µÄ¶¨ÒåÓòΪR£®
£¨¢ñ£©ÇómµÄȡֵ·¶Î§£»
£¨¢ò£©ÈômµÄ×î´óֵΪn£¬½â¹ØÓÚxµÄ²»µÈʽ£º|x-3|-2x¡Ü2n-4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªÔ²OµÄÓÐnÌõÏÒ£¬ÇÒÈÎÒâÁ½ÌõÏÒ¶¼±Ë´ËÏཻ£¬ÈÎÒâÈýÌõÏÒ²»¹²µã£¬ÕânÌõÏÒ½«Ô²O·Ö³ÉÁËan¸öÇøÓò£¬£¨ÀýÈ磺ÈçͼËùʾ£¬Ô²OµÄÒ»ÌõÏÒ½«Ô²O·Ö³ÉÁË2£¨¼´a1=2£©¸öÇøÓò£¬Ô²OµÄÁ½ÌõÏÒ½«Ô²O·Ö³ÉÁË4£¨¼´a2=4£©¸öÇøÓò£¬Ô²OµÄ3ÌõÏÒ½«Ô²O·Ö³ÉÁË7£¨¼´a3=7£©¸öÇøÓò£©£¬ÒÔ´ËÀàÍÆ£¬ÄÇôan+1Óëan£¨n¡Ý2£©Ö®¼äµÄµÝÍÆÊ½¹ØÏµÎª£ºan+1=an+n+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÈýÀâ×¶P-ABCÖУ¬²àÀâPA=2£¬PB=PC=$\sqrt{6}$£¬Ôòµ±ÈýÀâ×¶P-ABCµÄÈý¸ö²àÃæµÄÃæ»ýºÍ×î´óʱ£¬¾­¹ýµãP£¬A£¬B£¬CµÄÇòµÄ±íÃæ»ýÊÇ£¨¡¡¡¡£©
A£®4¦ÐB£®8¦ÐC£®12¦ÐD£®16¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸