精英家教网 > 高中数学 > 题目详情
13.已知圆O的有n条弦,且任意两条弦都彼此相交,任意三条弦不共点,这n条弦将圆O分成了an个区域,(例如:如图所示,圆O的一条弦将圆O分成了2(即a1=2)个区域,圆O的两条弦将圆O分成了4(即a2=4)个区域,圆O的3条弦将圆O分成了7(即a3=7)个区域),以此类推,那么an+1与an(n≥2)之间的递推式关系为:an+1=an+n+1

分析 根据题意,分析可得,n-1条弦可以将平面分为f(n-1)个区域,n条弦可以将平面分为f(n)个区域,
增加的这条弦即第n个圆与每条弦都相交,可以多分出n+1个区域,即可得答案.

解答 解:分析可得,n-1条弦可以将平面分为f(n-1)个区域,n条弦可以将平面分为f(n)个区域,
增加的这条弦即第n个圆与每条弦都相交,可以多分出n+1个区域,
即an+1=an+n+1,
故答案为an+1=an+n+1

点评 本题主要考查归纳推理的运用,关键要根据题意,分析出每增加一条弦,可以多分出几个区域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.三棱锥V-ABC的三条棱VA,VB,VC两两垂直,三个侧面与底面所成的二面角大小分别为α,β,γ.求证:$cosαcosβcosγ({\frac{1}{{{{cos}^2}α}}+\frac{1}{{{{cos}^2}β}}+\frac{1}{{{{cos}^2}γ}}})≥\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知焦距为2$\sqrt{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点为A,直线y=$\frac{4}{3}$与椭圆C交于P、Q两点(P在Q的左边),Q在x轴上的射影为B,且四边形ABPQ是平行四边形.
(1)求椭圆C的方程;
(2)斜率为k的直线l与椭圆C交于两个不同的点M,N.
(i)若直线l过原点且与坐标轴不重合,E是直线3x+3y-2=0上一点,且△EMN是以E为直角顶点的等腰直角三角形,求k的值
(ii)若M是椭圆的左顶点,D是直线MN上一点,且DA⊥AM,点G是x轴上异于点M的点,且以DN为直径的圆恒过直线AN和DG的交点,求证:点G是定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,ABCD是块矩形硬纸板,其中AB=2AD,$AD=\sqrt{2}$,E为DC的中点,将它沿AE折成直二面角D-AE-B.
(1)求证:AD⊥平面BDE;
(2)求二面角B-AD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,右顶点为A,下顶点为B,点P($\frac{3}{4}$,0)满足|PA|=|PB|.
(Ⅰ)求椭圆C的方程.
(Ⅱ)不垂直于坐标轴的直线l与椭圆C交于M,N两点,以MN为直径的圆过原点,且线段MN的垂直平分线过点P,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a>0,b>0,函数f(x)=|x+a|+|x-b|的最小值为4.
(Ⅰ)求a+b的值;
(Ⅱ)求$\frac{1}{4}{a^2}+\frac{1}{9}{b^2}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个四棱锥的三视图如图所示,则该四棱锥外接球的体积为$4\sqrt{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,正方体ABCD-A1B1C1D1的棱长为1,点M∈AB1,N∈BC1,且AM=BN≠$\sqrt{2}$,有以下四个结论:①AA1⊥MN;②AB∥MN;③MN∥平面A1B1C1D1;④MN与A1C1一定是异面直线.其中正确命题的序号是(  )
A.①③B.②③C.①④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.左、右焦点分别为F1、F2的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点Q(0,$\sqrt{3}$),P为椭圆上一点,△PF1F2的重心为G,内心为I,IG∥F1F2
(1)求椭圆C的方程;
(2)M为直线x-y=4上一点,过点M作椭圆C的两条切线MA、MB,A、B为切点,问直线AB是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

同步练习册答案