·ÖÎö £¨1£©ÓɹýµãQ£¬Ôòb=$\sqrt{3}$£¬ÇóµÃ£¬¡÷PF1F2µÄÖØÐÄΪGµã×ø±ê£¬ÓÉIG¡ÎF1F2£¬|y0|=3r£¬¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½¿ÉÖªa=2c£¬¼´¿ÉÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£»
£¨2£©ÀûÓÃÍÖÔ²µÄÇÐÏß·¢Å¨Ëõ£¬ÇóµÃÖ±ÏßABµÄ·½³Ì£¬ÓɵãMΪֱÏßx-y=4ÉÏ£¬´úÈëÕûÀí¼´¿ÉÇóµÃ¶¨µã×ø±ê£®
½â´ð ½â£º£¨1£©¡ßÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©½¹µãÔÚxÖáÉÏ£¬ÇÒ¹ýµã$Q£¨0£¬\sqrt{3}£©$£¬
¡à$b=\sqrt{3}$¡£¨1·Ö£©
Éè¡÷PF1F2ÄÚÇÐÔ²µÄ°ë¾¶Îªr£¬µãPµÄ×ø±êΪ£¨x0£¬y0£©£¬
Ôò¡÷PF1F2ÖØÐÄGµÄ×ø±êΪ$£¨\frac{x_0}{3}£¬\frac{y_0}{3}£©$£¬
¡ßIG¡ÎF1F2£¬
¡à|y0|=3r£®¡£¨2·Ö£©
ÓÉ¡÷PF1F2Ãæ»ý¿ÉµÃ$\frac{1}{2}£¨|P{F_1}|+|P{F_2}|+|{F_1}{F_2}|$£©r=$\frac{1}{2}|{F_1}{F_2}||{y_0}|$£¬
¼´a=2c£¬$£¨c=\sqrt{{a^2}-{b^2}}£©$£¬¡£¨4·Ö£©
Ôò½âµÃ$a=2£¬b=\sqrt{3}$£¬
¼´ËùÇóµÄÍÖÔ²·½³ÌΪÔòÍÖÔ²·½³ÌΪ$\frac{x^2}{4}+\frac{y^2}{3}=1$¡£¨5·Ö£©
£¨2£©ÉèM£¨x1£¬y1£©£¬A£¨x2£¬y2£©£¬B£¨x3£¬y3£©ÔòÇÐÏßMA£¬MBµÄ·½³Ì·Ö±ðΪ$\frac{{{x_2}x}}{4}+\frac{{{y_2}y}}{3}=1$£¬$\frac{{{x_3}x}}{4}+\frac{{{y_3}y}}{3}=1$£®¡£¨7·Ö£©
¡ßµãMÔÚÁ½ÌõÇÐÏßÉÏ£¬
¡à$\frac{{{x_2}{x_1}}}{4}+\frac{{{y_2}{y_1}}}{3}=1$£¬$\frac{{{x_3}{x_1}}}{4}+\frac{{{y_3}{y_1}}}{3}=1$£¬
¹ÊÖ±ÏßABµÄ·½³ÌΪ$\frac{{{x_1}x}}{4}+\frac{{{y_1}y}}{3}=1$£®¡£¨9·Ö£©
ÓÖ¡ßµãMΪֱÏßx-y=4ÉÏ£¬
¡ày1=x1-4
¼´Ö±ÏßABµÄ·½³Ì¿É»¯Îª$\frac{{{x_1}x}}{4}+\frac{{£¨{x_1}-4£©y}}{3}=1$£¬ÕûÀíµÃ£¨3x+4y£©x1=16y+12£¬
ÓÉ$\left\{\begin{array}{l}3x+4y=0\\ 16y+12=0\end{array}\right.$½âµÃ$\left\{\begin{array}{l}x=1\\ y=-\frac{3}{4}\end{array}\right.$£¬
Òò´Ë£¬Ö±ÏßAB¹ý¶¨µã$£¨1£¬-\frac{3}{4}£©$£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éÈý½ÇÐεÄÖØÐĹ«Ê½£¬Èý½ÇÐεÄÃæ»ý¹«Ê½£¬ÍÖÔ²µÄÇÐÏß¹«Ê½£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 4¦Ð | B£® | 8¦Ð | C£® | 12¦Ð | D£® | 16¦Ð |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 16¦Ð | B£® | 64¦Ð | C£® | $\frac{32}{3}$¦Ð | D£® | 32¦Ð |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 83 | B£® | 84 | C£® | 85 | D£® | 86 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ?x¡Ê[1£¬2]£¬x2-3x+2£¾0 | B£® | ?x∉[1£¬2]£¬x2-3x+2£¾0 | ||
| C£® | $?{x_0}¡Ê[{1£¬2}]£¬{x_0}^2-3{x_0}+2£¾0$ | D£® | $?{x_0}∉[{1£¬2}]£¬{x_0}^2-3{x_0}+2£¾0$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com