3£®×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2µÄÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¾­¹ýµãQ£¨0£¬$\sqrt{3}$£©£¬PΪÍÖÔ²ÉÏÒ»µã£¬¡÷PF1F2µÄÖØÐÄΪG£¬ÄÚÐÄΪI£¬IG¡ÎF1F2£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©MΪֱÏßx-y=4ÉÏÒ»µã£¬¹ýµãM×÷ÍÖÔ²CµÄÁ½ÌõÇÐÏßMA¡¢MB£¬A¡¢BΪÇе㣬ÎÊÖ±ÏßABÊÇ·ñ¹ý¶¨µã£¿Èô¹ý¶¨µã£¬Çó³ö¶¨µãµÄ×ø±ê£»Èô²»¹ý¶¨µã£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓɹýµãQ£¬Ôòb=$\sqrt{3}$£¬ÇóµÃ£¬¡÷PF1F2µÄÖØÐÄΪGµã×ø±ê£¬ÓÉIG¡ÎF1F2£¬|y0|=3r£¬¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½¿ÉÖªa=2c£¬¼´¿ÉÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£»
£¨2£©ÀûÓÃÍÖÔ²µÄÇÐÏß·¢Å¨Ëõ£¬ÇóµÃÖ±ÏßABµÄ·½³Ì£¬ÓɵãMΪֱÏßx-y=4ÉÏ£¬´úÈëÕûÀí¼´¿ÉÇóµÃ¶¨µã×ø±ê£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©½¹µãÔÚxÖáÉÏ£¬ÇÒ¹ýµã$Q£¨0£¬\sqrt{3}£©$£¬
¡à$b=\sqrt{3}$¡­£¨1·Ö£©
Éè¡÷PF1F2ÄÚÇÐÔ²µÄ°ë¾¶Îªr£¬µãPµÄ×ø±êΪ£¨x0£¬y0£©£¬
Ôò¡÷PF1F2ÖØÐÄGµÄ×ø±êΪ$£¨\frac{x_0}{3}£¬\frac{y_0}{3}£©$£¬
¡ßIG¡ÎF1F2£¬
¡à|y0|=3r£®¡­£¨2·Ö£©
ÓÉ¡÷PF1F2Ãæ»ý¿ÉµÃ$\frac{1}{2}£¨|P{F_1}|+|P{F_2}|+|{F_1}{F_2}|$£©r=$\frac{1}{2}|{F_1}{F_2}||{y_0}|$£¬
¼´a=2c£¬$£¨c=\sqrt{{a^2}-{b^2}}£©$£¬¡­£¨4·Ö£©
Ôò½âµÃ$a=2£¬b=\sqrt{3}$£¬
¼´ËùÇóµÄÍÖÔ²·½³ÌΪÔòÍÖÔ²·½³ÌΪ$\frac{x^2}{4}+\frac{y^2}{3}=1$¡­£¨5·Ö£©
£¨2£©ÉèM£¨x1£¬y1£©£¬A£¨x2£¬y2£©£¬B£¨x3£¬y3£©ÔòÇÐÏßMA£¬MBµÄ·½³Ì·Ö±ðΪ$\frac{{{x_2}x}}{4}+\frac{{{y_2}y}}{3}=1$£¬$\frac{{{x_3}x}}{4}+\frac{{{y_3}y}}{3}=1$£®¡­£¨7·Ö£©
¡ßµãMÔÚÁ½ÌõÇÐÏßÉÏ£¬
¡à$\frac{{{x_2}{x_1}}}{4}+\frac{{{y_2}{y_1}}}{3}=1$£¬$\frac{{{x_3}{x_1}}}{4}+\frac{{{y_3}{y_1}}}{3}=1$£¬
¹ÊÖ±ÏßABµÄ·½³ÌΪ$\frac{{{x_1}x}}{4}+\frac{{{y_1}y}}{3}=1$£®¡­£¨9·Ö£©
ÓÖ¡ßµãMΪֱÏßx-y=4ÉÏ£¬
¡ày1=x1-4
¼´Ö±ÏßABµÄ·½³Ì¿É»¯Îª$\frac{{{x_1}x}}{4}+\frac{{£¨{x_1}-4£©y}}{3}=1$£¬ÕûÀíµÃ£¨3x+4y£©x1=16y+12£¬
ÓÉ$\left\{\begin{array}{l}3x+4y=0\\ 16y+12=0\end{array}\right.$½âµÃ$\left\{\begin{array}{l}x=1\\ y=-\frac{3}{4}\end{array}\right.$£¬
Òò´Ë£¬Ö±ÏßAB¹ý¶¨µã$£¨1£¬-\frac{3}{4}£©$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éÈý½ÇÐεÄÖØÐĹ«Ê½£¬Èý½ÇÐεÄÃæ»ý¹«Ê½£¬ÍÖÔ²µÄÇÐÏß¹«Ê½£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªÔ²OµÄÓÐnÌõÏÒ£¬ÇÒÈÎÒâÁ½ÌõÏÒ¶¼±Ë´ËÏཻ£¬ÈÎÒâÈýÌõÏÒ²»¹²µã£¬ÕânÌõÏÒ½«Ô²O·Ö³ÉÁËan¸öÇøÓò£¬£¨ÀýÈ磺ÈçͼËùʾ£¬Ô²OµÄÒ»ÌõÏÒ½«Ô²O·Ö³ÉÁË2£¨¼´a1=2£©¸öÇøÓò£¬Ô²OµÄÁ½ÌõÏÒ½«Ô²O·Ö³ÉÁË4£¨¼´a2=4£©¸öÇøÓò£¬Ô²OµÄ3ÌõÏÒ½«Ô²O·Ö³ÉÁË7£¨¼´a3=7£©¸öÇøÓò£©£¬ÒÔ´ËÀàÍÆ£¬ÄÇôan+1Óëan£¨n¡Ý2£©Ö®¼äµÄµÝÍÆÊ½¹ØÏµÎª£ºan+1=an+n+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÈýÀâ×¶P-ABCÖУ¬²àÀâPA=2£¬PB=PC=$\sqrt{6}$£¬Ôòµ±ÈýÀâ×¶P-ABCµÄÈý¸ö²àÃæµÄÃæ»ýºÍ×î´óʱ£¬¾­¹ýµãP£¬A£¬B£¬CµÄÇòµÄ±íÃæ»ýÊÇ£¨¡¡¡¡£©
A£®4¦ÐB£®8¦ÐC£®12¦ÐD£®16¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÉèSAΪÇòµÄÖ±¾¶£¬B¡¢C¡¢DÈýµãÔÚÇòÃæÉÏ£¬ÇÒSA¡ÍÃæBCD£¬Èý½ÇÐÎBCDµÄÃæ»ýΪ3£¬VS-BCD=3VA-BCD=3£¬ÔòÇòµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®16¦ÐB£®64¦ÐC£®$\frac{32}{3}$¦ÐD£®32¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖª?x0¡ÊRʹ²»µÈʽ|x-1|-|x-2|¡Ýt³ÉÁ¢£®
£¨1£©ÇóÂú×ãÌõ¼þµÄʵÊýtµÄ¼¯ºÏT£»
£¨2£©Èôm£¾1£¬n£¾1£¬¶Ô?t¡ÊT£¬²»µÈʽlog3m•log3n¡Ýtºã³ÉÁ¢£¬ÇómnµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®±±ËÎÊýѧ¼ÒÉòÀ¨µÄÖ÷ÒªÊýѧ³É¾Í֮һΪ϶»ýÊõ£¬Ëùν϶»ý£¬¼´¡°»ýÖ®ÓÐ϶¡±Õߣ¬ÈçÀÛÆå¡¢²ã̳֮À࣬ÕâÖÖ³¤·½Ì¨ÐÎ×´µÄÎïÌå¶â»ý£¬Éè϶»ý¹²n²ã£¬Éϵ×ÓÉa¡Áb¸öÎïÌå×é³É£¬ÒÔϸ÷²ãµÄ³¤¡¢¿íÒÀ´Î¸÷Ôö¼ÓÒ»¸öÎïÌ壬×îϲ㣨¼´Ïµף©ÓÉc¡Ád¸öÎïÌå×é³É£¬ÉòÀ¨¸ø³öÇó϶»ýÖÐÎïÌå×ÜÊýµÄ¹«Ê½ÎªS=$\frac{n}{6}$[£¨2b+d£©a+£¨b+2d£©c]+$\frac{n}{6}$£¨c-a£©£®ÒÑÖªÓÉÈô¸É¸öÏàͬСÇòÕ³ð¤×é³ÉµÄ¼¸ºÎÌå¶â»ýµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¶â»ýÖÐËùÓÐСÇòµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®83B£®84C£®85D£®86

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÃüÌâ¡°?x¡Ê[1£¬2]£¬x2-3x+2¡Ü0¡±µÄ·ñ¶¨ÊÇ£¨¡¡¡¡£©
A£®?x¡Ê[1£¬2]£¬x2-3x+2£¾0B£®?x∉[1£¬2]£¬x2-3x+2£¾0
C£®$?{x_0}¡Ê[{1£¬2}]£¬{x_0}^2-3{x_0}+2£¾0$D£®$?{x_0}∉[{1£¬2}]£¬{x_0}^2-3{x_0}+2£¾0$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Èçͼ£¬ÒÑÖªÖ±Ïßl£ºy=k£¨x+1£©£¨k£¾0£©ÓëÅ×ÎïÏßC£ºy2=4xÏཻÓÚA¡¢BÁ½µã£¬µãFΪÅ×ÎïÏß½¹µã£¬ÇÒA¡¢BÁ½µãÔÚÅ×ÎïÏßC×¼ÏßÉϵÄÉäÓ°·Ö±ðÊÇM¡¢N£¬Èô|AM|=2|BN|£¬ÔòkµÄÖµÊÇ$\frac{2}{3}\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Ä³Ð£1000Ãû¸ßÈýѧÉú²Î¼ÓÁËÒ»´ÎÊýѧ¿¼ÊÔ£¬Õâ´Î¿¼ÊÔ¿¼ÉúµÄ·ÖÊý·þ´ÓÕý̬·Ö²¼N£¨90£¬¦Ò2£©£¬Èô·ÖÊýÔÚ£¨70£¬110]ÄڵĸÅÂÊΪ0.7£¬¹À¼ÆÕâ´Î¿¼ÊÔ·ÖÊý²»³¬¹ý70·ÖµÄÈËÊýΪ325ÈË£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸