精英家教网 > 高中数学 > 题目详情
12.如图,已知直线l:y=k(x+1)(k>0)与抛物线C:y2=4x相交于A、B两点,点F为抛物线焦点,且A、B两点在抛物线C准线上的射影分别是M、N,若|AM|=2|BN|,则k的值是$\frac{2}{3}\sqrt{2}$.

分析 直线y=k(x+1)(k>0)恒过定点P(-1,0),由此推导出|OB|=$\frac{1}{2}$|AF|,由此能求出点B的坐标,从而能求出k的值.

解答 解:设抛物线C:y2=4x的准线为l:x=-1
直线y=k(x+1)(k>0)恒过定点P(-1,0)
如图过A、B分别作AM⊥l于M,BN⊥l于N,
由|FA|=2|FB|,则|AM|=2|BN|,
点B为AP的中点、连接OB,
则|OB|=$\frac{1}{2}$|AF|,
∴|OB|=|BF|,点B的横坐标为$\frac{1}{2}$,
∴点B的坐标为B($\frac{1}{2}$,$\sqrt{2}$),
把B($\frac{1}{2}$,$\sqrt{2}$)代入直线l:y=k(x+1)(k>0),
解得k=$\frac{2}{3}\sqrt{2}$.
故答案为$\frac{2}{3}\sqrt{2}$.

点评 本题考查直线与圆锥曲线中参数的求法,考查抛物线的性质,是中档题,解题时要注意等价转化思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图,正方体ABCD-A1B1C1D1的棱长为1,点M∈AB1,N∈BC1,且AM=BN≠$\sqrt{2}$,有以下四个结论:①AA1⊥MN;②AB∥MN;③MN∥平面A1B1C1D1;④MN与A1C1一定是异面直线.其中正确命题的序号是(  )
A.①③B.②③C.①④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.左、右焦点分别为F1、F2的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点Q(0,$\sqrt{3}$),P为椭圆上一点,△PF1F2的重心为G,内心为I,IG∥F1F2
(1)求椭圆C的方程;
(2)M为直线x-y=4上一点,过点M作椭圆C的两条切线MA、MB,A、B为切点,问直线AB是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知等差数列{an}满足:a2=2,Sn-Sn-3=54(n>3),Sn=100,则n=(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某几何体的三视图如图所示,在该几何体的体积是(  )
A.$\frac{10}{3}$B.$\frac{20}{3}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知甲、乙两组数据的茎叶图如图所示,若它们的中位数相同,则甲组数据的平均数为(  )
A.32B.33C.34D.35

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.以双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上一点M为圆心作圆,该圆与x轴相切于C的一个焦点F,与y轴交于P,Q两点,若△MPQ为正三角形,则C的离心率等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}、{bn}、{cn},以下两个命题:
①若{an+bn}、{bn+cn}、{an+cn}都是递增数列,则{an}、{bn}、{cn}都是递增数列;
②若{an+bn}、{bn+cn}、{an+cn}都是等差数列,则{an}、{bn}、{cn}都是等差数列;
下列判断正确的是(  )
A.①②都是真命题B.①②都是假命题
C.①是真命题,②是假命题D.①是假命题,②是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设P={x|x<4},Q={x|x2<4},则(  )
A.P⊆QB.Q⊆PC.P⊆∁RQD.Q⊆∁RP

查看答案和解析>>

同步练习册答案