精英家教网 > 高中数学 > 题目详情
17.已知甲、乙两组数据的茎叶图如图所示,若它们的中位数相同,则甲组数据的平均数为(  )
A.32B.33C.34D.35

分析 根据中位数相同求出m的值,从而求出甲的平均数即可.

解答 解:由乙的数据是:21,32,34,36得中位数是33,
故m=3,
故$\overline{{x}_{甲}}$=$\frac{1}{3}$(27+33+36)=32,
故选:A.

点评 本题考查了中位数和平均数问题,考查茎叶图的读法,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.$\underset{lim}{n→∞}\frac{(2n-3)^{2}}{3{n}^{2}-n+7}$=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.北宋数学家沈括的主要数学成就之一为隙积术,所谓隙积,即“积之有隙”者,如累棋、层坛之类,这种长方台形状的物体垛积,设隙积共n层,上底由a×b个物体组成,以下各层的长、宽依次各增加一个物体,最下层(即下底)由c×d个物体组成,沈括给出求隙积中物体总数的公式为S=$\frac{n}{6}$[(2b+d)a+(b+2d)c]+$\frac{n}{6}$(c-a).已知由若干个相同小球粘黏组成的几何体垛积的三视图如图所示,则该垛积中所有小球的个数为(  )
A.83B.84C.85D.86

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知O是坐标原点,A,B分别是函数y=sinπx以O为起点的一个周期内的最大值点和最小值点.则tan∠OAB=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,已知直线l:y=k(x+1)(k>0)与抛物线C:y2=4x相交于A、B两点,点F为抛物线焦点,且A、B两点在抛物线C准线上的射影分别是M、N,若|AM|=2|BN|,则k的值是$\frac{2}{3}\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x-1}-2,x≥1}\\{{2}^{1-x}-2,x<1}\end{array}\right.$,则不等式f(x-1)≤0的解集为(  )
A.{x|0≤x≤2}B.{x|0≤x≤3}C.{x|1≤x≤2}D.{x|1≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x||x-1|≤2},B={x|x=2n-1,n∈Z},则A∩B=(  )
A.{1,3}B.{0,2}C.{1}D.{-1,1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$\overrightarrow{a}$、$\overrightarrow{b}$是平面向量,如果|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=4,|$\overrightarrow{a}$+$\overrightarrow{b}$|=2,那么|$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.$\sqrt{46}$B.7C.5D.$\sqrt{21}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知椭圆的左焦点为F1,有一小球A从F1处以速度v开始沿直线运动,经椭圆壁反射(无论经过几次反射速度大小始终保持不变,小球半径忽略不计),若小球第一次回到F1时,它所用的最长时间是最短时间的5倍,则椭圆的离心率为(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{5}-1}{2}$C.$\frac{3}{5}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案