精英家教网 > 高中数学 > 题目详情
5.已知O是坐标原点,A,B分别是函数y=sinπx以O为起点的一个周期内的最大值点和最小值点.则tan∠OAB=$\frac{4}{3}$.

分析 根据题意画出图形,结合图形,利用函数y=sinπx的对称性得出∠OAB=2∠OAC,结合二倍角公式求出tan∠OAB的值.

解答 解:如图所示;

O是坐标原点,A,B分别是函数y=sinπx以O为起点的一个周期内的最大值点和最小值点,
∴AB过点D,且∠OAB=2∠OAC;
又A($\frac{1}{2}$,1),
∴tan∠OAC=$\frac{1}{2}$,
∴tan∠OAB=$\frac{2tan∠OAC}{1{-tan}^{2}∠OAC}$=$\frac{2×\frac{1}{2}}{1{-(\frac{1}{2})}^{2}}$=$\frac{4}{3}$.
故答案为:$\frac{4}{3}$.

点评 本题主要考查了三角函数的图象与性质的应用问题,也考查了直角三角形中边角关系的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.命题“对任意的x∈R,x3-x+1≤0”的否定是(  )
A.不存在x∈R,x3-x+1≤0B.存在x∈R,x3-x+1≤0
C.对任意的x∈R,x3-x+1>0D.存在x∈R,x3-x+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+tcosα}\\{y=1+tsinα}\end{array}\right.$(t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2=4$\sqrt{2}$ρsin(θ+$\frac{π}{4}$)-4.
(Ⅰ)求曲线C2的直角坐标方程,并指出其表示何种曲线;
(Ⅱ)若曲线C1与曲线C2交于A、B两点,求|AB|的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知四棱锥P-ABCD的顶点都在球O的球面上,底面ABCD是矩形,平面PAD⊥底面ABCD,△PAD为正三角形,AB=2AD=4,则球O的表面积为(  )
A.$\frac{56π}{3}$B.$\frac{64π}{3}$C.24πD.$\frac{80π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知等差数列{an}满足:a2=2,Sn-Sn-3=54(n>3),Sn=100,则n=(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设$f(x)=\left\{\begin{array}{l}x+4,x≤-2或x≥3\\{x^2}-1,-2<x<3\end{array}\right.$,若函数y=f(x)+k的图象与x轴恰有三个不同交点,则k的取值范围是(  )
A.(-2,1)B.[0,1]C.[-2,0)D.[-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知甲、乙两组数据的茎叶图如图所示,若它们的中位数相同,则甲组数据的平均数为(  )
A.32B.33C.34D.35

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,若输入n=10,则输出S=(  )
A.$\frac{4}{9}$B.$\frac{5}{11}$C.$\frac{6}{13}$D.$\frac{36}{55}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.化简:$\frac{1}{cos80°}$-$\frac{\sqrt{3}}{sin80°}$=4.

查看答案和解析>>

同步练习册答案