精英家教网 > 高中数学 > 题目详情

【题目】0, 1, 2, 3, 4, 5这六个数字, 可以组成______个无重复数字的三位数, 也可以组成______个能被5整除且无重复数字的五位数.

【答案】100 216

【解析】

第一个空:先确定三位数的最高数位上的数,再确定另外两个数位上的数;

第二个空:先确定五位数个位上的数字,然后分类讨论,其他数位上的数。

第一个空:第一步,先确定三位数的最高数位上的数,有种方法;

第二步,确定另外二个数位上的数,有种方法,

所以可以组成个无重复数字的三位数;

第二个空:被5整除且无重复数字的五位数的个数上的数有2种情况:

当个数上的数字是0时,其他数位上的数有个;

当个数上的数字是5时,先确定最高数位上的数,有种方法,而后确定其他三个数位上的数有种方法,所以共有个数,

根据分类计算原理共有个数。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是异面直线,则以下四个命题:存在分别经过直线的两个互相垂直的平面;存在分别经过直线的两个平行平面;经过直线有且只有一个平面垂直于直线经过直线有且只有一个平面平行于直线其中正确的个数有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是

(1)命题“”的否定是“”;

(2)l为直线,为两个不同的平面,若,则

(3)给定命题p,q,若“为真命题”,则是假命题;

(4)“”是“”的充分不必要条件.

A. (1)(4)B. (2)(3)C. (3)(4)D. (1)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,函数恰有两个不同的零点,求实数的值;

2)当时,

若对于任意,恒有,求的取值范围;

,求函数在区间上的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某仓库为了保持库内温度,四周墙上装有如图所示的通风设施,该设施的下部是等边三角形ABC,其中AB=2米,上部是半圆,点EAB的中点.△EMN是通风窗,(其余部分不通风)MN是可以沿设施的边框上下滑动且保持与AB平行的伸缩杆(MNAB不重合).

(1)设MNC之间的距离为x米,试将△EMN的面积S表示成的函数

(2)当MNC之间的距离为多少时,△EMN面积最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数e为自然对数的底数)

1)求的最小值;

2)若对于任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明家的晚报在下午任何一个时间随机地被送到,他们一家人在下午任何一个时间随机地开始晚餐.为了计算晚报在晚餐开始之前被送到的概率,某小组借助随机数表的模拟方法来计算概率,他们的具体做法是将每个1分钟的时间段看作个体进行编号,编号为01编号为02,依此类推,编号为90.在随机数表中每次选取一个四位数,前两位表示晚报时间,后两位表示晚餐时间,如果读取的四位数表示的晚报晚餐时间有一个不符合实际意义,视为这次读取的无效数据(例如下表中的第一个四位数7840中的78不符合晚报时间).按照从左向右,读完第一行,再从左向右读第二行的顺序,读完下表,用频率估计晚报在晚餐开始之前被送到的概率为  

7840 1160 5054 3139 8082 7732 5034 3682 4829 4052

4201 6277 5678 5188 6854 0200 8650 7584 0136 7655

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新鲜的荔枝很好吃,但摘下后容易变黑,影响卖相.某大型超市进行扶贫工作,按计划每年六月从精准扶贫户中订购荔枝,每天进货量相同且每公斤20元,售价为每公斤24元,未售完的荔枝降价处理,以每公斤16元的价格当天全部处理完.根据往年情况,每天需求量与当天平均气温有关.如果平均气温不低于25摄氏度,需求量为公斤;如果平均气温位于摄氏度,需求量为公斤;如果平均气温位于摄氏度,需求量为公斤;如果平均气温低于15摄氏度,需求量为公斤.为了确定6月1日到30日的订购数量,统计了前三年6月1日到30日各天的平均气温数据,得到如图所示的频数分布表:

平均气温

天数

2

16

36

25

7

4

(Ⅰ)假设该商场在这90天内每天进货100公斤,求这90天荔枝每天为该商场带来的平均利润(结果取整数);

(Ⅱ)若该商场每天进货量为200公斤,以这90天记录的各需求量的频率作为各需求量发生的概率,求当天该商场不亏损的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】全国大学生机器人大赛是由共青团中央,全国学联,深圳市人民政府联合主办的赛事,是中国最具影响力的机器人项目,是全球独创的机器人竞技平台.全国大学生机器人大赛比拼的是参赛选手们的能力,坚持和态度,展现的是个人实力以及整个团队的力量.2015赛季共吸引全国240余支机器人战队踊跃报名,这些参赛战队来自全国六大赛区,150余所高等院校,其中不乏北京大学,清华大学,上海交大,中国科大,西安交大等众多国内顶尖高校,经过严格筛选,最终由111支机器人战队参与到2015年全国大学生机器人大赛的激烈角逐之中,某大学共有“机器人”兴趣团队1000个,大一、大二、大三、大四分别有100,200,300,400个,为挑选优秀团队,现用分层抽样的方法,从以上团队中抽取20个团队.

(1)应从大三抽取多少个团队?

(2)将20个团队分为甲、乙两组,每组10个团队,进行理论和实践操作考试(共150分),甲、乙两组的分数如下:

甲:125,141,140,137,122,114,119,139,121,142

乙:127,116,144,127,144,116,140,140,116,140

从甲、乙两组中选一组强化训练,备战机器人大赛.

(i)从统计学数据看,若选择甲组,理由是什么?若选择乙组,理由是什么?

(ii)从乙组中不低于140分的团队中任取两个团队,求至少有一个团队为144分的概率.

查看答案和解析>>

同步练习册答案