精英家教网 > 高中数学 > 题目详情
如图,四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.
(Ⅰ)证明:Q为BB1的中点;
(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;
(Ⅲ)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.
考点:二面角的平面角及求法,棱柱、棱锥、棱台的体积,用空间向量求平面间的夹角
专题:综合题,空间位置关系与距离
分析:(Ⅰ)证明平面QBC∥平面A1D1DA,可得△QBC∽△A1AD,即可证明Q为BB1的中点;
(Ⅱ)设BC=a,则AD=2a,则VQ-AA1D=
1
3
1
2
•2a•h•d
=
1
3
ahd
,VQ-ABCD=
1
3
a+2a
2
•d•
h
2
=
1
4
ahd,利用V棱柱=
3
2
ahd,即可求出此四棱柱被平面α所分成上、下两部分的体积之比;
(Ⅲ)△ADC中,作AE⊥DC,垂足为E,连接A1E,则DE⊥平面AEA1,DE⊥A1E,可得∠AEA1为平面α与底面ABCD所成二面角,求出S△ADC=4,AE=4,可得tan∠AEA1=
AA1
AE
=1,即可求平面α与底面ABCD所成二面角的大小.
解答: (Ⅰ)证明:∵四棱柱ABCD-A1B1C1D1中,四边形ABCD为梯形,AD∥BC,
∴平面QBC∥平面A1D1DA,
∴平面A1CD与面QBC、平面A1D1DA的交线平行,∴QC∥A1D
∴△QBC∽△A1AD,
BQ
BB1
=
BQ
AA1
=
BC
AD
=
1
2

∴Q为BB1的中点;
(Ⅱ)解:连接QA,QD,设AA1=h,梯形ABCD的高为d,四棱柱被平面α所分成上、下两部分的体积为V1,V2
设BC=a,则AD=2a,∴VQ-AA1D=
1
3
1
2
•2a•h•d
=
1
3
ahd
,VQ-ABCD=
1
3
a+2a
2
•d•
h
2
=
1
4
ahd,
∴V2=
7
12
ahd

∵V棱柱=
3
2
ahd,
∴V1=
11
12
ahd,
∴四棱柱被平面α所分成上、下两部分的体积之比
11
7

(Ⅲ)解:在△ADC中,作AE⊥DC,垂足为E,连接A1E,则DE⊥平面AEA1,∴DE⊥A1E,
∴∠AEA1为平面α与底面ABCD所成二面角的平面角,
∵BC∥AD,AD=2BC,
∴S△ADC=2S△ABC
∵梯形ABCD的面积为6,DC=2,
∴S△ADC=4,AE=4,
∴tan∠AEA1=
AA1
AE
=1,
∴∠AEA1=
π
4

∴平面α与底面ABCD所成二面角的大小为
π
4
点评:本题考查面面平行的性质,考查体积的计算,考查面面角,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设m∈R,则m=1是直线l1:(m+1)x+2y-1=0和l2:x+my+4=0平行的(  )
A、充分必要条件
B、充分不必要条件
C、必要不充分条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

设平面向量
am
=(m,1),
bn
=(2,n),其中m,n∈{1,2,3}记“使得
am
⊥(
am
-
bn
)成立的(m,n)”为事件A,则事件A发生的概率为(  )
A、
1
3
B、
1
9
C、
1
8
D、
1
16

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C所对的边a、b、c成等比数列,且公比为q,则q+
sinB
sinA
的取值范围是(  )
A、(0,+∞)
B、(0,
5
+1)
C、(
5
-1,+∞)
D、(
5
-1,
5
+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,已知a+b=8,c=7,
CA
CB
=-
15
2

(1)求角C;
(2)若sin(α+C)=
1
3
(0<α<π),求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.
(1)求证:AB⊥PD;
(2)若∠BPC=90°,PB=
2
,PC=2,问AB为何值时,四棱锥P-ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上.
(Ⅰ)求异面直线D1E与A1D所成的角;
(Ⅱ)若二面角D1-EC-D的大小为45°,求点B到平面D1EC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax3+3x2+3x(a≠0).
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,曲线C:
x=2+
2
2
t
y=1+
2
2
t
(t为参数)的普通方程为
 

查看答案和解析>>

同步练习册答案