精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.
(1)求证:AB⊥PD;
(2)若∠BPC=90°,PB=
2
,PC=2,问AB为何值时,四棱锥P-ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.
考点:二面角的平面角及求法
专题:空间角,空间向量及应用
分析:(1)要证AD⊥PD,可以证明AB⊥面PAD,再利用面面垂直以及线面垂直的性质,即可证明AB⊥PD.
(2)过P做PO⊥AD得到PO⊥平面ABCD,作OM⊥BC,连接PM,由边长关系得到BC=
6
,PM=
2
3
,设AB=x,则VP-ABCD=
1
3
8x2-6x4
,故当x2=
2
3
时,VP-ABCD取最大值,建立空间直角坐标系O-AMP,利用向量方法即可得到夹角的余弦值.
解答: 解:(1)∵在四棱锥P-ABCD中,ABCD为矩形,∴AB⊥AD,
又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
∴AB⊥面PAD,∴AB⊥PD.
(2)过P做PO⊥AD,∴PO⊥平面ABCD,
作OM⊥BC,连接PM
∴PM⊥BC,
∵∠BPC=90°,PB=
2
,PC=2,
∴BC=
6
,PM=
2
3
=
2
3
3
,BM=
6
3

设AB=x,∴OM=x∴PO=
4
3
-x2

∴VP-ABCD=
1
3
×x×
6
×
4
3
-x2
=
1
3
8x2-6x4

x2=
2
3
,即x=
6
3
,VP-ABCD=
2
6
9

建立空间直角坐标系O-AMP,如图所示,
则P(0,0,
6
3
),D(-
2
6
3
,0,0),C(-
2
6
3
6
3
,0),M(0,
6
3
,0),B(
6
3
6
3
,0)
面PBC的法向量为
n
=(0,1,1),面DPC的法向量为
m
=(1,0,-2)
∴cosθ=|
n
m
|
n
| |
m
|
|=|
-2
2
5
|=
10
5
点评:本题考查线面位置关系、线线位置关系、线面角的度量,考查分析解决问题、空间想象、转化、计算的能力与方程思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设一组数据31,37,33,a,35的平均数是34,则这组数据的方差是(  )
A、2.5B、3C、3.5D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是双曲线
y2
a2
-
x2
b2
=1(a>0,b>0)的下、上焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为(  )
A、
2
B、2
C、
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:
(1)直线PA∥平面DEF;
(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.
(Ⅰ)证明:Q为BB1的中点;
(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;
(Ⅲ)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx+
m
x
,m∈R.
(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;
(Ⅱ)讨论函数g(x)=f′(x)-
x
3
零点的个数;
(Ⅲ)若对任意b>a>0,
f(b)-f(a)
b-a
<1恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足a1a2a3…an=(
2
)bn
(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2
(Ⅰ)求an和bn
(Ⅱ)设cn=
1
an
-
1
bn
(n∈N*).记数列{cn}的前n项和为Sn
  (i)求Sn
  (ii)求正整数k,使得对任意n∈N*均有Sk≥Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是平行四边形,BA=BD=
2
,AD=2,PA=PD=
5
,E,F分别是棱AD,PC的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)若二面角P-AD-B为60°,
(i)证明平面PBC⊥平面ABCD;
(ii)求直线EF与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为
 

查看答案和解析>>

同步练习册答案