精英家教网 > 高中数学 > 题目详情
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上.
(Ⅰ)求异面直线D1E与A1D所成的角;
(Ⅱ)若二面角D1-EC-D的大小为45°,求点B到平面D1EC的距离.
考点:用空间向量求平面间的夹角,异面直线及其所成的角,点、线、面间的距离计算,二面角的平面角及求法
专题:空间位置关系与距离,空间角
分析:解法一:(Ⅰ)连结AD1.判断AD1是D1E在平面AA1D1D内的射影.得到异面直线D1E与A1D所成的角.
(Ⅱ)作DF⊥CE,垂足为F,连结D1F,说明∠DFD1为二面角D1-EC-D的平面角,∠DFD1=45°.利用等体积法,求点B到平面D1EC的距离.
解法二:分别以DA,DC,DD1为x轴,y轴,z轴,建立空间直角坐标系.
(Ⅰ)通过向量的数量积为0,即可求异面直线D1E与A1D所成的角;
(Ⅱ)
m
=(0,0,1)为面DEC的法向量,设
n
=(x,y,z)为面CED1的法向量,通过二面角D1-EC-D的大小为45°,求出x、y、z的关系,结合
n
D1C
,求出平面的法向量,利用d=
|
CB
n
|
|
n
|
求点B到平面D1EC的距离.
解答: 解:解法一:(Ⅰ)连结AD1.由AA1D1D是正方形知AD1⊥A1D.
∵AB⊥平面AA1D1D,
∴AD1是D1E在平面AA1D1D内的射影.
根据三垂线定理得AD1⊥D1E,
则异面直线D1E与A1D所成的角为90°.…(5分)
(Ⅱ)作DF⊥CE,垂足为F,连结D1F,则CE⊥D1F.
所以∠DFD1为二面角D1-EC-D的平面角,∠DFD1=45°.于是DF=DD1=1,D1F=
2

易得 Rt△BCE≌Rt△CDF,所以CE=CD=2,又BC=1,所以BE=
3

设点B到平面D1EC的距离为h,则由于VB-CED1=VD-BCE,即f'(x),
因此有CE•D1F•h=BE•BC•DD1,即2
2
h=
3
,∴h=
6
4
.…..…(12分)
解法二:如图,分别以DA,DC,DD1为x轴,y轴,z轴,建立空间直角坐标系.
(Ⅰ)由A1(1,0,1),得
DA1
=(1,0,1)

设E(1,a,0),又D1(0,0,1),则
D1E
=(1,a,-1)

DA1
D1E
=1+0-1=0
DA1
D1E
,则异面直线D1E与A1D所成的角为90°.…(5分)
(Ⅱ)
m
=(0,0,1)为面DEC的法向量,设
n
=(x,y,z)为面CED1的法向量,
|cos<
m
n
>|=
|
m
n
|
|
m
||
n
|
=
|z|
x2+y2+z2
=cos45°=
2
2

∴z2=x2+y2.①
由C(0,2,0),得
D1C
=(0,2,-1)
,则
n
D1C
,即
n
D1C
=0
,∴2y-z=0②
由①、②,可取
n
=(
3
,1,2)
,又
CB
=(1,0,0)

所以点B到平面D1EC的距离d=
|
CB
n
|
|
n
|
=
3
2
2
=
6
4
.…(12分)
点评:本题考查用空间向量求平面间的夹角、异面直线及其所成的角、点、线、面间的距离计算、二面角的平面角及求法,考查空间想象能力以及计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,对于定义域内的任意x,满足f(x)=-f(x+1),且当-1<x≤1时,f(x)=1-x2,若函数g(x)=f(x)+x-a恰有两个零点,则实数a的所有可能取值构成的集合为(  )
A、{a|a=2k+
3
4
或2k+
5
4
,k∈N}
B、{a|a=2k-
1
4
或2k+
3
4
,k∈N}
C、{a|a=2k+1或2k+
5
4
,k∈N}
D、{a|a=2k+1,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z1=1+i,z2=
3
-i,其中i为虚数单位,则
z1
z2
的实部为(  )
A、
1+
3
4
i
B、
3
-1
4
C、
1-
3
4
i
D、
1-
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱柱ABCD-A1B1C1D1中,A1A⊥底面ABCD,四边形ABCD为梯形,AD∥BC,且AD=2BC,过A1、C、D三点的平面记为α,BB1与α的交点为Q.
(Ⅰ)证明:Q为BB1的中点;
(Ⅱ)求此四棱柱被平面α所分成上下两部分的体积之比;
(Ⅲ)若AA1=4,CD=2,梯形ABCD的面积为6,求平面α与底面ABCD所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.
(1)求a的值及函数f(x)的极值;
(2)证明:当x>0时,x2<ex
(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x<cex

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足a1a2a3…an=(
2
)bn
(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2
(Ⅰ)求an和bn
(Ⅱ)设cn=
1
an
-
1
bn
(n∈N*).记数列{cn}的前n项和为Sn
  (i)求Sn
  (ii)求正整数k,使得对任意n∈N*均有Sk≥Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差d>0的等差数列,首项a1=3,前n项和为Sn,数列{bn}是等比数列,其中b1=1,且a2b2=12,S3+b2=20.
(1)求数列{an}和{bn}的通项公式;
(2)令cn=
a n,a n≥b n
b nan<b n
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(Ⅰ)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;
(Ⅱ)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(2x+φ)(x∈R)的图象的一部分如图所示,将函数f(x)的图象向左平移α(α>0)个单位后得到的图象关于y轴对称,则α的最小值为(  )
A、
π
6
B、
π
3
C、
6
D、
3

查看答案和解析>>

同步练习册答案