精英家教网 > 高中数学 > 题目详情
18.m取何实数值时,关于x的方程x2+(m-2)x+5-m=0没有小于或等于2的实根?

分析 由题意可得△=(m-2)2-4(5-m)<0,或 $\left\{\begin{array}{l}{{(m-2)}^{2}-4(5-m)≥0}\\{2-m>4}\\{5-m>4}\end{array}\right.$.由此求得m的范围.

解答 解:关于x的方程x2+(m-2)x+5-m=0没有小于或等于2的实根,
等价于△=(m-2)2-4(5-m)<0,或 $\left\{\begin{array}{l}{{(m-2)}^{2}-4(5-m)≥0}\\{2-m>4}\\{5-m>4}\end{array}\right.$.
求得-4<m<4 或 m≤-4,
综合可得,m<4.

点评 本题主要考查一元二次方程根的分布与系数的关系,体现了分类讨论的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.判断${\;}_{x→1}^{lin}$e${\;}^{\frac{2}{x-1}}$是否存在?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知点P的柱坐标为($\sqrt{2}$,$\frac{π}{4}$,5),点B的球坐标为($\sqrt{6}$,$\frac{π}{3}$,$\frac{π}{6}$),则这两个点在空间直角坐标系中的点的坐标为(  )
A.点P(5,1,1),点B($\frac{3\sqrt{6}}{4}$,$\frac{3\sqrt{2}}{4}$,$\frac{\sqrt{6}}{2}$)B.点P(1,1,5),点B($\frac{3\sqrt{6}}{4}$,$\frac{3\sqrt{2}}{4}$,$\frac{\sqrt{6}}{2}$)
C.点P($\frac{3\sqrt{6}}{4}$,$\frac{3\sqrt{2}}{4}$,$\frac{\sqrt{6}}{2}$),点P(1,1,5)D.点P(1,1,5),点B($\frac{\sqrt{6}}{2}$,$\frac{3\sqrt{6}}{4}$,$\frac{3\sqrt{2}}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.将下列普通方程化为参数方程.
(1)x-y+1=0,设x=z,z为参数;
(2)x2+(y-1)2=1,设y=1+cosθ,θ为参数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2,且3$\overrightarrow{a}$+5$\overrightarrow{b}$与4$\overrightarrow{a}$-3$\overrightarrow{b}$垂直,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)对任意x,y∈R,f(x+y)=f(x)+f(y).且当x>0时,f(x)<0,求f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.关于x的一元二次方程x2+5x-3a=0至少有一个负根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若|x|=5,|y|=3,且|x-y|=y-x,求(x+y)|x+y|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在实数范围内定义一种运算“※”,其规则为a※b=a-5b,试确定不等式x※1<2的解集.

查看答案和解析>>

同步练习册答案