精英家教网 > 高中数学 > 题目详情
4.设10m=2,10n=3.则10-2m-10-n=-$\frac{1}{12}$.

分析 利用指数的运算性质即可得出.

解答 解:∵10m=2,10n=3.
∴102m=4,$1{0}^{-n}=\frac{1}{3}$,
∴10-2m-10-n=$\frac{1}{4}$-$\frac{1}{3}$=-$\frac{1}{12}$.
故答案为:-$\frac{1}{12}$.

点评 本题考查了指数的运算性质,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.数列{an},{bn}都是等比数列,当n≤3时,bn-an=2n,若数列{an}唯一,则a1=(  )
A.-2B.$\frac{2}{3}$C.$\frac{1}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.不等式(x-y)(x+y)≥0所表示的平面区域为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=$\sqrt{5}$,求下列各式的值:
(1)a+a-1
(2)a2+a-2
(3)a2-a-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.分解因式:x3+9x2+26x+24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算:2$\root{3}{a}$÷4$\root{6}{a•b}$+3$\sqrt{{b}^{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.对任意两个集合X和Y,X-Y是指所有属于X,但不属于Y的元素的集合,X和Y对称差表示X△Y,规定为X△Y=(X-Y)∪(Y-X).设集合A={y|y=x2,x∈R},B={y|-3≤y≤3},则A△B=[-3,0)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知sinx=-$\frac{\sqrt{3}}{3}$,x∈[-2π,2π],求角x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合A={2,4,x2+x},若6∈A,则x=-3或2.

查看答案和解析>>

同步练习册答案