精英家教网 > 高中数学 > 题目详情
1426和1643的最大公约数是(  )
A、34B、12C、93D、31
考点:用辗转相除计算最大公约数
专题:算法和程序框图
分析:利用“辗转相除法”即可得出.
解答: 解:∵1643=1426×1+217,1426=217×6+124,217=124×1+93,124=93×1+31,93=31×3.
∴1426和1643的最大公约数是31.
故选:D.
点评:本题考查了“辗转相除法”,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复数m(3+i)-(2+i)(m∈R,i为虚数单位)在复平面内对应的点不可能位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=4sin(2x-
π
6
)的图象的一个对称中心是(  )
A、(
π
12
,0)
B、(
π
3
,0)
C、(-
π
6
,0)
D、(
π
6
,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个函数中,既是(0,
π
2
)上的增函数,又是以π为周期的偶函数的是(  )
A、y=tanx
B、y=|sinx|
C、y=cosx
D、y=|cosx|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cosα=
3
5
,α∈(0,π),则cos(α-
π
6
)的值为(  )
A、
3+4
3
10
B、
3-4
3
10
C、
3
3
+4
10
D、
3
3
-4
10

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,有a2+b2-c2=ab,则角C为(  )
A、60°B、120°
C、30°D、45°或135°

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,正确命题的个数是(  )
(1)若x,y∈C,则x+yi=1+i的充要条件是x=y=1
(2)若a,b∈R且a>b,则a+i>b+i
(3)若x2+y2=0,x,y∈C,则x=y=0.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x-log
1
2
x实数a,b,c满足a<b<c,且满足f(a)•f(b)•f(c)<0,若实数x0是函数y=f(x)的一个零点,则下列结论一定成立的是(  )
A、x0>c
B、x0<c
C、x0>a
D、x0<a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=6,an+1+an=3•2n+1,n∈N*
(Ⅰ)设bn=an-2n+1,证明:数列{bn}是等比数列;
(Ⅱ)在数列{an}中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;
(Ⅲ)若1<r<s且r,s∈N*,求证:使得a1,ar,as成等差数列的点列(r,s)在某一条直线上.

查看答案和解析>>

同步练习册答案