精英家教网 > 高中数学 > 题目详情
已知函数f(x)=xe-x+(x-2)ex-a(e≈2.73).
(Ⅰ)当a=2时,证明函数f(x)在R上是增函数;
(Ⅱ)若a>2时,当x≥1时,f(x)≥
x2-2x+1
ex
恒成立,求实数a的取值范围.
(Ⅰ)当a=2时,f(x)=xe-x+(x-2)ex-2,f(x)的定义域为R,
f′(x)=e-x-xe-x+ex-2+(x-2)ex-2=(x-1)(ex-2-e-x)=e-x(x-1)(ex-1-1)(ex-1+1).
当x≥1时,x-1≥0,ex-1-1≥0,所以f′(x)≥0,
当x<1时,x-1<0,ex-1-1<0,所以f′(x)≥0,
所以对任意实数x,f′(x)≥0,
所以f(x)在R上是增函数;  
(II)当x≥1时,f(x)≥
x2-2x+1
ex
恒成立,即(x-2)e2x-a-x2+3x-1≥0恒成立,
设h(x)=(x-2)e2x-a-x2+3x-1(x≥1),则h′(x)=(2x-3)(e2x-a-1),
令h′(x)=(2x-3)(e2x-a-1)=0,解得x1=
3
2
x2=
a
2

(1)当1<
a
2
3
2
,即2<a<3时,
x (1,
a
2
a
2
a
2
3
2
3
2
3
2
,+∞)
h′(x) + 0 - 0 +
h(x) 单调递增 极大值 单调递减 极小值 单调递增
所以要使结论成立,则h(1)=-e2-a+1≥0,h(
3
2
)=-
1
2
e3-a+
5
4
≥0,即e2-a≤1,e3-a
5
2

解得a≥2,a≥3-ln
5
2
,所以3-ln
5
2
≤a<3;
(2)当
a
2
=
3
2
,即a=3时,h′(x)≥0恒成立,所以h(x)是增函数,又h(1)=-e-1+1>0,
故结论成立;                              
(3)当
a
2
3
2
,即a>3时,
x (1,
3
2
3
2
3
2
a
2
a
2
a
2
,+∞)
h′(x) + 0 - 0 +
h(x) 单调递增 极大值 单调递减 极小值 单调递增
所以要使结论成立,
则h(1)=-e2-a+1≥0,h(
a
2
)=-
a2
4
+2a-3≥0,即e2-a≤1,a2-8a+12≤0,
解得a≥2,2≤a≤6,所以3<a≤6;                              
综上所述,若a>2,当x≥1时,f(x)≥
x2-2x+1
ex
恒成立,实数a的取值范围是3-ln
5
2
≤a≤6.                                                    …(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案