精英家教网 > 高中数学 > 题目详情
19.某中学采用系统抽样方法,从该校高一年级全体500名学生中抽50名学生做牙齿健康检查.现将500名学生从1到500进行编号.已知从21~30这10个数中取的数是24,则在第1小组1~10中随机抽到的数是(  )
A.2B.4C.6D.8

分析 由已知条件利用系统抽样的性质直接求解.

解答 解:现将500名学生从1到500进行编号,
已知从21~30这10个数中取的数是24,
则该抽样为系统抽样,由系统抽样的性质得在第1小组1~10中随机抽到的数是4.
故选:B.

点评 本题考查样本数据的确定,是基础题,解题时要认真审题,注意系统抽样的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.直线x-2y+2=0经过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$(a>0,b>0)的两个顶点.
(1)求椭圆C的方程;
(2)已知抛物线D:y=x2+$\frac{1}{4}$,点M在抛物线D上运动,直线l:y=x+m(m∈[-$\sqrt{2}$,-1])交椭圆C于点N,P,求△MNP面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设一个口袋中装有10个球其中红球2个,绿球3个,白球5个,这三种球除颜色外完全相同.从中一次任意选取3个,取后不放回.
(1)求三种颜色球各取到1个的概率;
(2)设X表示取到的红球的个数,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知圆中$\widehat{AC}$=$\widehat{BD}$,AC=CD,过C点的圆的切线与BA的延长线交于E点.
证明:(1)AD∥CE
(2)CD.CE=BC.AC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四棱锥F-ABCD的底面ABCD是菱形,其对角线AC=2,BD=$\sqrt{2}$.CF与平面 ABCD垂直,CF=2.求二面角B-AF-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在正四棱柱ABCD-A1B1C1D1中,E是BC的中点,F是C1D的中点,P是棱CC1所在直线上的动点.则下列四个命题:
①CD⊥PE
②EF∥平面ABC1
③${V_{P-{A_1}D{D_1}}}={V_{{D_1}-ADE}}$
④不存在过P的直线与正四棱柱的各个面都成等角.
其中正确命题的序号是①③(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow a=(1,2)$,$\overrightarrow a•\overrightarrow b=5$,$|{\overrightarrow a-\overrightarrow b}|=2\sqrt{5}$,则|$\overrightarrow b|$=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.椭圆$\sqrt{(x-2)^{2}+(y-2)^{2}}$=$\frac{|3x+4y+8|}{25}$的离心率为$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设$\overrightarrow{a}$=(cosx+sinx,$\sqrt{3}$cosx),$\overrightarrow{b}$=(cosx-sinx,2sinx),其中x∈R.函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求函数f(x)的最大值、最小值及相应x的值;
(2)求函数f(x)的单调递减区间.

查看答案和解析>>

同步练习册答案