分析 不等式等价变化为2a≤$\frac{2{x}^{2}+{y}^{2}}{xy}$=$\frac{2x}{y}$+$\frac{y}{x}$,由x∈[1,2]及y∈[1,4],求得$\frac{1}{2}$≤$\frac{y}{x}$≤4,运用基本不等式求得$\frac{2x}{y}$+$\frac{y}{x}$的最小值即可.
解答 解:依题意,不等式2x2-2axy+y2≤0等价为2a≤$\frac{2{x}^{2}+{y}^{2}}{xy}$=$\frac{2x}{y}$+$\frac{y}{x}$,
设t=$\frac{y}{x}$,
∵x∈[1,2]及y∈[1,4],
∴$\frac{1}{2}$≤$\frac{1}{x}$≤1,即$\frac{1}{2}$≤$\frac{y}{x}$≤4,
∴$\frac{1}{2}$≤t≤4,
则$\frac{2x}{y}$+$\frac{y}{x}$=t+$\frac{2}{t}$,
∵t+$\frac{2}{t}$≥2$\sqrt{t•\frac{2}{t}}$=2$\sqrt{2}$,
当且仅当t=$\frac{2}{t}$,即t=$\sqrt{2}$∈[$\frac{1}{2}$,4]时取等号.
∴2a≤2$\sqrt{2}$,
即a≤$\sqrt{2}$,
故答案为:(-∞,$\sqrt{2}$].
点评 本题主要考查不等式的应用,将不等式恒成立转化为求函数的最值是解决本题的关键,注意运用基本不等式,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M∩N | B. | (∁UM)∩N | C. | M∩(∁UN) | D. | (∁UM)∪(∁UN) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com