精英家教网 > 高中数学 > 题目详情
13.已知集合A={-1,0},B={x|-1<x<1},则A∩B=(  )
A.{-1}B.{0}C.{-1,0}D.{-1,0,1}

分析 利用交集定义能求出集合A∩B.

解答 解:集合A={-1,0},B={x|-1<x<1},则A∩B={0},
故选:B.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知数列{an}中,a1=4,an+1=$\sqrt{\frac{6+{a}_{n}}{2}}$,n∈N*,Sn为{an}的前n项和.
(Ⅰ)求证:n∈N*时,an>an+1
(Ⅱ)求证:n∈N*时,2≤Sn-2n<$\frac{16}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点($\sqrt{2}$,1),且焦距为2$\sqrt{2}$.
(1)求椭圆C的方程;
(2)若直线l:y=k(x+1)与椭圆C相交于不同的两点A、B,定点P的坐标为($\frac{1}{4}$,0),证明:$\overrightarrow{PA}$•$\overrightarrow{PB}$+$\frac{4}{2{k}^{2}+1}$是常数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且仅有一个点P满足PF1⊥PF2,则椭圆的离心率为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}-1}}{2}$C.$\frac{{3-\sqrt{5}}}{2}$D.$\frac{{\sqrt{5}-1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在等比数列{an}中,若a1+a2=18,a2+a3=12,则公比q为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆G:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的短轴端点到右焦点F2(1,0)的距离为2,平行四边形ABCD的四个顶点都在椭圆G上.
(Ⅰ)求椭圆G的方程;
(Ⅱ)若直线AB和AD的斜率存在且分别为k1,k2,证明:k1•k2为定值;
(Ⅲ)当直线AB和DC分别过椭圆G的左焦点F1和右焦点F2时,求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若关于x的不等式|2x-m|-$\frac{1}{{2}^{x}}$<0在区间[0,1]内恒成立,则实数m的范围$\frac{3}{2}<m<2$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若复数z=2-3i,则在复平面内,z对应的点的坐标是(2,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数z满足z=$\frac{7+i}{1-2i}$(i为虚数单位),则复数z的共轭复数$\overline{z}$=(  )
A.1+3iB.1-3iC.3-iD.3+i

查看答案和解析>>

同步练习册答案